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Background and Motivation Impacts and Next Steps

Resolving Convergence Issues 
in a Simplified Cloud Parameterization

Improving Convergence
in EAM’s Turbulence Parameterization

Figure 4: (a): Time-stepping error after 1 h in a stratocumulus case (DYCOMS RF02) simulated by the EAM single-column model.
Numbers in parentheses are self-convergence rates. (b), (c): Time evolution of cloud fraction during a 6 h period in simulations
with �t = 80s before and after bug fix. Bug fix was included in the master branch of E3SM’s code repository on Aug 15, 2018.

terms of the range of physical phenomena it describes as well as the number of equations and the right-hand
side terms those equations contain. Our initial tests showed that CLUBB coupled with EAMv1’s dynamical
core converged at a rate of 0.4.

Single-column simulations: To tease out the impact of physics-dynamics coupling, we conducted ide-
alized simulations for various cloud regimes (stratocumulus, shallow convection, and deep convection) us-
ing EAM’s single-column configuration. Some of the cases initially exhibited very poor convergence and
strong timestep sensitivity (see blue marks and line in Figure 4). Further investigation uncovered a bug in
the single-column model that produced very strong, artificial wind shear when the horizontal wind (u and
v) forcing profiles did not extend as high in altitude as the model grid. The resulting rapid turbulent motions
damaged the convergence rate. After implementing a bug fix we were able to achieve the desired first-order
convergence in those single-column cases. It is worth noting that the bug would not have been found if the
single-column model was only exercised with the default long timesteps. This experience also taught us the
importance of ensuring the realism of the external forcing when performing convergence tests.

Global model results: After demonstrating that CLUBB converges at the expected first-order rate in
single-column cases, we analyzed convergence in the global model. Initial experiments showed poor conver-
gence of rate 0.4, with a plateau in the convergence curve. Math team members pointed out such a plateau
could have been caused by rapid transients unresolvable by long timesteps but progressively better resolved
at shorter timesteps. By inspecting time series, we discovered that the transients arose early in the simulation
because the turbulence moments were initialized to zero, but the mean shear profiles and buoyant forcing
were consistent with strong turbulence. The initial spin-up of turbulence created rapid transients. To remedy
this problem, we revised EAM’s initialization procedure to use spun-up values of the turbulence moments
that are consistent with the model’s atmospheric state. This “warm” start increased the convergence rate
to nearly 1 after 1 h test runs. This experience demonstrated that imbalanced model state variables can
cause fast transients and affect convergence. Although this fact is known in the math community, it is not
widely appreciated by atmospheric scientists. It would be useful to ascertain whether improperly initialized
turbulence fields also significantly degrade short-term hindcasts.

Although convergence is now close to 1 in 1-h global simulations with dynamical core plus CLUBB
and warm start, the convergence rate shows a gradual degradation as the simulations proceed further. This
suggests that there still exists a pathology that needs to be addressed. We have come up with two hypotheses:
First, since the single-column results converge as expected but the global results do not, it is possible that the
convergence problem does not reside within CLUBB but arises from a defect in the coupling with dynamics.
(Note that this coupling was the primary cause of poor convergence in the simple parameterization discussed
in Sect. 3.3.) Second, the cause of poor convergence resides solely in CLUBB, but the pathology is triggered
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physics-dynamics coupling in weather, climate, and Earth system models (Gross et al., 2018).

3.2 Building an Interdisciplinary Team
Our project team in Phase 1 consisted of 8 atmospheric modelers and 6 applied mathematicians from

2 DOE labs and 2 universities. To establish common understanding, a series of 13 internal tutorials were
held on topics related to project areas, such as mathematical convergence, formal verification processes, the-
ory and methods for stochastic differential equations, turbulence parameterization and CLUBB, and EAM’s
code structure. Through these tutorials as well as weekly whole-team conference calls, bi-weekly math-
focused meetings, and additional small-group discussions, the domain scientists recognized the need to
distinguish physical concepts, continuous equations, and discretization methods a parameterization is based
on. Scientists also learned to document parameterizations in a way that was understandable by mathemati-
cians. The applied mathematicians developed an understanding of physical concepts in EAM and learned
to conduct EAM simulations and revise its source code. Excellent working relationships were established
among team members with both sides making key contributions to the work described below.

3.3 Resolving Convergence Issues in a Simplified Cloud Parameterization

Key Accomplishments

• Quantified dependence of convergence on

model formulation and process splitting us-

ing formal error analysis

• Identified inconsistent process splitting caus-

ing unbounded terms and poor convergence

• Derived a reformulation of the parameteri-

zation that avoids nonphysical states unad-

dressed by artificial fixes

• Observed long-term impact from addressing

short-term convergence issues

Findings are summarized in Wan et al. (2019)

and Vogl et al. (2019b).

The first convergence problem we addressed was in
a simplified model consisting of the dynamical core of
EAM (Dennis et al., 2012; Taylor and Fournier, 2010)
coupled with a bare-bones version of the large-scale
condensation parameterization used in the Community
Atmosphere Model (CAM) versions 2 to 4 (Rasch and
Kristjánsson, 1998; Zhang et al., 2003). The grid-box
mean condensation rate reads

Q = f ‚Q ≠
1
Al ≠ f „Al

2
+ Âql

ˆf

ˆt
(2)

where Q is the condensation rate, f is cloud fraction,
ql is the cloud liquid mass concentration, and Al is the
time derivative of ql resulting from the resolved advec-
tion. Overbar and hat denote spatial averaging over an
entire grid box or its cloudy portion, respectively. Âql is the liquid water concentration averaged over the sub-
grid locations that experience the transition from cloudy to cloud-free or vice versa. The cloud fraction f is
diagnosed from the grid-box mean relative humidity like in many of the current AGCMs. This parameter-
ization has incorporated the concept of fractional cloudiness and the assumption of saturation equilibrium,
both of which are widely used in global AGCMs.

Baseline model and formal error analysis: The baseline version of the condensation parameterization
uses closure assumptions and temporal discretization taken from CAM4. The unknown quantities Âql and „Al

are approximated with

Âql = ql
nú

max (f nú, fmin) , „Al = Al
n

, (3)

where fmin = 0.1%. Because CAM4 (and also EAM) uses sequential splitting between dynamics and many
parameterizations, Âql is evaluated at an intermediate time level, nú, between timesteps n and n + 1.

Numerical experiments revealed that the last term in Eq. (2) was the primary cause of the convergence
problem. To conduct a formal error analysis, we wrote the model as a single equation,

dy

dt
= D(y)

¸ ˚˙ ˝
dynamics

+ y

f(y)
df

dt
¸ ˚˙ ˝
physics

(4)

where y is one of T , qv, or ql with T and qv denoting the air temperature and water vapor concentration,
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Equation: Time integration error:
respectively. Letting en be the difference between the true solution and the computed solution at time tn, a
formal analysis gave the following bound for the error:
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the constants K and KD describe the smoothness of the solution, and ẽ0 is the error after the first timestep.
Equation (5) shows that the sequence of the splitting impacts the size of the error. Here we see that the

dynamics and physics operators do not appear in the same ways in the error terms indicating that the error can
be more sensitive to the nonlinearity as well as boundedness and continuity properties of one operator over
the other. This error estimate (5) also confirms that the baseline model is first-order convergent if all the LŒ
norms are bounded. These norms will not be bounded if the model quantities are discontinuous or similarly
poorly behaved. For instance, if ql/f is not bounded, as can happen when cloud liquid concentration is
positive and the cloud fraction is 0, (5) suggests the error could be very large. Physically speaking, zero
cloud fraction should imply the absence of cloud liquid; however, this relationship may not hold true if the
model does not explicitly enforce it. The relationship may also not hold true if ql/f is numerically evaluated
outside of saturation equilibrium, which is possible due to the sequential splitting of dynamics and physics.
In either case, the ratio ql/f can be unbounded and cause the splitting error term to be large.

Figure 2: (a) time-stepping error in the simplified condensation model after 12 h;
numbers in parentheses are self-convergence rates. (b) 10-year mean zonal mean
total cloud fraction in CAM4 using it original formulation and modifications in-
spired by convergence issues in the simplified model. From Wan et al. (2019).

Sensitivity experiments confirmed
that unbounded ql/f was indeed the
reason for poor convergence in the
baseline model. Sequential split-
ting inevitably creates model state out
of saturation equilibrium before the
condensation calculation, for exam-
ple when advection brings cloud liq-
uid into a dry grid box; the interme-
diate states are unphysical and hence
inappropriate for the closure assump-
tion for ql. Moreover, simplistically
ignoring the subgrid variability of Al,
as done in Eq. (3), can result in an ar-
tificial source of cloud liquid that traps
a grid box in the pathological state of zero cloud fraction but non-zero cloud liquid, and hence also con-
tribute to poor convergence. The self-convergence rate observed for the baseline model was 0.7 after 1 h
(not shown) and degraded to 0.22 after 12 h (Figure 2a). In contrast, after we (i) revised the process splitting
by using the full time level n for estimating Âql and (ii) revised the subgrid assumption for „Al by attribut-
ing negative grid-box mean Al to the cloudy subgrid locations, first-order convergence was restored for the
simplified model. The same two modifications, when applied to the full-fledged CAM4, led to substantial
changes in the simulated cloud amount (Figure 2b) and cloud radiative forcing (Wan et al., 2019).

Alternative model formulation with improved numerical robustness: To understand the physical
implications of the closure assumptions (3) in the baseline model, we derived an alternative formulation
of the large-scale condensation parameterization that avoids both the singularity problem and a persistent
nonphysical state we discovered in the process. The derivation focuses on subgrid behavior, where all
quantities are allowed to spatially vary within a grid box instead of necessarily fixed to piecewise-constant
profiles. These subgrid profiles are constrained to being consistent with grid-cell averages and to a physical
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• Causes of poor convergence are identified (i.e., unphysical 
choices of process splitting and sub-grid distribution 
assumptions). New splitting and sub-grid reconstruction methods 
not only restore convergence but also significantly affect long 
term climate in the full model.
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Figure 2. (a) Time integration error and solution self-convergence in 12 h simulations in the 
simplified model. (b) Multi-year mean zonal mean cloud fraction corresponding to different 
process splitting schemes and sub-grid distribution assumptions.

Figure 3. (a) Time-stepping error after 1 h in a stratocumulus case (DYCOMS RF02) simulated
by the EAMv1 single-column model. (b), (c): Time evolution of cloud fraction during a 6 h
period in simulations with ∆t = 80s before and after bug fix.

• A priori error analysis indicates the expected convergence 
rate and reveals necessary conditions for convergence.

• Revised model initialization 
helped to improve 
convergence in global 
simulations. The sensitivity 
points to possible 
singularities and 
discontinuities in the 
numerical solution. Root 
causes of this behavior are 
under investigation. Figure 4. Time-stepping error and 

solution self-convergence after 1 h 
in global simulations using EAMv1.

This work is part of the SciDAC project  “ Assessing and Improving the Numerical Solution of Atmospheric Physics in E3SM ”

• Convergence tests helped to identify code bugs in EAMv1  

• Investigation in time-step convergence has led to 
improved numerical robustness and physical consistency 
in the atmosphere model

• Code modifications that improve convergence turn out to 
have substantial impact on the model’s long-term climate 
(i.e., they matter for both mathematicians and climate 
scientists)

• Process splitting (coupling) has been found to have 
major impacts on solution convergence and accuracy. 
Our future work will focus more on such coupling. 
Examples include the coupling between clouds, radiation, 
and aerosols; boundary layer and surface fluxes

In DOE’s global atmosphere model, EAM
• time integration errors in the physics 

parameterizations (sub-grid models) 
are found to be orders of magnitude 
larger than those in the dynamical 
core (fluid dynamics solver)

• those errors decrease with time step 
at a rate substantially slower 
than expected

The goals of this work are to
• understand the root causes of poor convergence
• improve the time integration to achieve better numerical accuracy

Figure 1: (a): Global mean shortwave cloud forcing change (�SWCF) caused by a globally uniform 4 K increase in sea surface
temperature, simulated by EAMv0 using 5 min (light green) or 30 min (default, blue) timesteps. The height of each bar indicates
the average over 10 model years. The whiskers indicate the ±‡ range where ‡ is the standard deviation of yearly results. (b) and
(c): Timestep error in air temperature (y-axis) and solution self-convergence rate (numbers in parentheses) in 1 h global simulations
conducted with EAMv0 and EAMv1, respectively. The definition of the timestep error follows Wan et al. (2015).

v1 converge at the expected rate of 1.0 but the full models converge at substantially lower rates of 0.3 or
0.4. This suggests that the parameterizations or their coupling to dynamics are the primary causes of the
undesirable numerical properties. Poor convergence hence provides a pointer to places in the model where
improvements are needed to reduce numerical artifacts and uncertainty in future climate simulations.

The E3SM model is designed (and being updated) with the Department of Energy’s (DOE’s) leading-
edge computers in mind. The E3SM project will focus on high-resolution modeling in the next years.
Smaller timesteps will become necessary for maintaining stability of explicit schemes in the dynamical
core. For the parameterizations, model developers generally have the inclination to retain large step sizes
or only mildly shorten them to save computational cost, but a recent example from E3SM itself has shown
that this could cause unacceptable numerical errors (Zhang et al., 2018). To reap the most benefits from
the extra computational cost that comes with the necessary reduction of step size at higher spatial
resolutions, time integration schemes with higher order are desirable. It is therefore urgent to improve
solution convergence.

Another goal of the E3SM project is to quantify Earth system uncertainties using ensemble modeling,
for which a method to generate representative ensembles is a key. While the climate modeling community
has started some efforts to create climate projection ensembles by perturbing initial conditions (Kay et al.,
2015), experience in numerical weather prediction has shown that such methods often give insufficient
spread among the ensemble members. The E3SM project does not yet have a concrete strategy for perturb-
ing its currently deterministic simulations. In Phase 1, we identified terms in the equations of EAMv1’s
turbulence and cloud macrophysics parameterization that can be potential candidates for a stochastic formu-
lation (Sect. 4.4). A computationally efficient time integration method was developed for physics-dynamics
equations with state-dependent stochastic forcing and was evaluated in prototype problems (Sect. 3.6). Al-
though our work in this aspect only addresses one (among many) of the sources of model uncertainties,
namely those associated with time integration errors, it can be a useful step toward the E3SM project’s
long-term plan for ensemble modeling.
1.2 Programmatic Relevance

As explained in Sect. 1.1, timestep error in atmospheric physics parameterization is a major contributor
to numerical uncertainties in EAM’s climate change simulations and poor convergence can hinder efficient
use of computing resources in high-resolution simulations. Our efforts aiming at addressing these issues,
are therefore directly relevant to DOE Office of Biological and Environmental Research (BER) Climate and
Environmental Sciences Division’s (CESD’s) vision to “develop an improved capability for Earth system
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• We used a version of EAM containing the dynamical core and a 
simplified but still representative cloud parameterization. 

Figure 1. Time integration error and
solution self-convergence in 1 h
simulations using EAMv1.
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