
The Gap to Fill
Time integration issues such as 
numerical accuracy and solution 
convergence have largely been 
overlooked in the development of 
atmospheric physics 
parameterizations, not only in E3SM 
but also by other modeling groups 
worldwide.

Specific Goals
Understanding the causes of poor 
time step convergence in EAM 
(Figure 1). Improving solution 
accuracy. Establishing a numerically 
more robust model.

Key Outcomes
• New insights on causes of 

convergence problems

• Methods for improving 
convergence in both 
deterministic and stochastic 
systems

• Demonstration of the impact of  
improved convergence on 
climate simulations

• New methods for assessing 
solution correctness for HPC 
applications

• Bug fixes for E3SM

• Increased awareness of the 
issues by E3SM and related 
communities

Components of the Math-Climate Collaboration

Why It Matters
• Poor convergence means the code is behaving unexpectedly. Furthermore, the 

accuracy gain from future reduction of time step size in high-resolution models will 
be much less than expected (Figure 1)

• EAM-simulated long-term climate is sensitive to model step size, implying 
uncertainties in the model’s predictions (Figure 2)

Ongoing and Future Work
• Addressing convergence issues in EAM’s turbulence and cloud parameterizations
• Improving numerical coupling of interacting physical processes (e.g., clouds, 

aerosols and radiation, boundary layer and surface)
• Further development of new methods for stochastic problems

Figure 2. Shortwave cloud forcing 
changes caused by 4K sea surface 
warming, predicted by EAMv0 using 

two different time step sizes.

Figure 1. Time integration error and solution self-convergence 
in 1 h simulations conducted with EAMv0 and v1.

Connections to Climate

• Climate simulations 
demonstrate the impact of 
new methods developed 
in core activities 

• Numerical artifacts in 
climate simulations 
motivate further 
development of new time 
integration methods.

HPC Applications548 H. Wan et al.: Solution reproducibility test

Figure 5. Ensemble-mean 1RMSDt,j (dots) and the ±2� range of the mean (filled boxes) where � denotes the standard deviation. The
left end of an unfilled box shows the threshold value corresponding to P0 = 0.5 % in the one-sided t test. All values shown here have been
normalized by the mean RMSD of the trusted ensemble, i.e., RMSDtrusted,t,j , of the corresponding prognostic variable and domain (see
y axis labels). Red and blue indicate fail and pass, respectively, according to the criterion defined by Eq. (6). Results are shown at t = 5min
for four test cases: (a) P , (b) YS-Intel15-O3, (c) DUST, and (d) CONV-LND. The test case configurations are explained in Table 1 and
Sect. 4.

4.2 Results at 5 min

We now take a closer look at the test diagnostics at a sin-
gle time instance. In Fig. 5, the statistical distributions of
µt,j (the mean 1RMSD) estimated from the 12-member
ensembles are shown at t = 5 min for the individual prog-
nostic variables and domains for four test cases. The values
are normalized using the corresponding mean RMSD of the
trusted ensemble, i.e., RMSDtrusted,t,j . The dots indicate the
observed ensemble mean (i.e., 1RMSDt,j ), and the filled
boxes indicate the ±2� range of the mean. The left end of
an unfilled box shows the threshold value corresponding to
P0 = 0.5 % in the one-sided t test. Red and blue indicate fail
and pass, respectively, according to the criterion defined by
Eq. (6). Notice that the x axes in the sub-panels of Fig. 5
are shown in different scales. The normalized mean RMSD
differences between the P ensemble and the trusted ensem-
ble are small, on the order of 0.1 or smaller, and the value of
0 lies within the ±2� range of the observed 1RMSDt,j for
all the Nvar ⇥ Ndom variables (Fig. 5a). In contrast, the YS-

Intel15-O3 case (which is known to produce incorrect solu-
tions) is associated with typical RMSD differences of around
1. The large number of failing variables (16 out of 20) and
the very small Pmin,t (1 ⇥ 10�11 %) indicate a clearly failing
case.

The test case with a modified dust emission factor (DUST)
was expected to be challenging for the TSC method. In any
model day, the emission only occurs at a very small frac-
tion of the dust source areas. Dust particles emitted from the
surface can only be transported over a short distance dur-
ing the few-minute simulation time, and the impact on me-
teorological conditions through the absorption and/or scat-
tering of radiation is also limited. Hence, it is unlikely that
the solution differences can be seen in the global tempera-
ture RMSD. This was the reason that motivated us to use
multiple prognostic variables and to separate land and ocean
when defining the test diagnostics. The results shown in
Fig. 5c confirm our expectation, as only 1 out of the 20
1RMSDj,t is significantly larger than zero. The DUST ex-
periment should nevertheless be considered a clearly failing
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Convergence-based testing methods are 
developed to objectively assess solution 
correctness on new HPC platforms (e.g., software 
environment, new hardware, reduced or mixed-
precision arithmetic). Low cost and fast turnaround 
make the methods particularly attractive for high-
resolution E3SM.

Figure 7. Intel compiler v15 with -O3 optimization was found 
to give incorrect results. (See poster by Zhang et al.)

Core Activities: 
Identifying and Addressing Convergence Bottlenecks  

A Stochastic PDE perspective
• Helps to explain causes of 

convergence problems in the 
current EAM

• Develops new time 
integration methods for future
stochastic parameterizations 
in E3SM and ensemble 
modeling

• Provides higher numerical 
accuracy and computational 
efficiency

Figure 7: Time-stepping error in numerical solutions of the noise-forced
advection-diffusion equation (11) using the forward Euler scheme with (blue)
and without (red) Itô correction. (a) and (b) correspond to test problems with
constant (a) or space-dependent (b) advection velocities. – = 0 is a white
noise case and – = 10≠6 is a colored noise case. All RMSEs were calculated
against analytical solutions. From Stinis et al. (2019).

clearly seen in this example, regardless
of the color of the noise. For the same
timestep sizes, the Itô correction helps
to substantially reduce time-stepping er-
ror and significantly improve the con-
vergence rate of the numerical solutions.
Alternatively, for the same target accu-
racy, the generalized Itô correction al-
lows for the use of significantly longer
step size and hence helps to reduce the
computational cost of the numerical sim-
ulations. The ability to accurately and
efficiently solve a stochastic differential
equation provides a solid basis for the
Phase 2 work that aims at developing a
stochastic version of EAM’s turbulence
parameterization CLUBB (Sect. 4.4).

One point worth emphasizing is that colored noises, like we tested in the numerical example above,
are in principle resolvable by sufficiently small step sizes. This means that although our derivation started
from a stochastic differential equation, the generalized Itô correction can also be useful for deterministic
problems for the purpose of improving solution convergence, accuracy, and efficiency. We will come back
to this point in Sect. 4.

3.7 Process Interactions in EAMv1 and the Impact on Long-term Climate
Key Accomplishment

Demonstrated that process interaction and its numerical

representation have strong impacts on the long-term cli-

mate in EAMv1. Some of these findings are discussed in

Zhang et al. (2019b) and Brunke et al. (2019).

Apart from the analyses that took a mathe-
matical perspective and evaluated solution ac-
curacy and convergence in short-term simula-
tions, we also took a more traditional climate
modeler’s perspective and carried out long-
term climate simulations using EAMv1.

Physics-physics coupling: Timestep sensitivity in EAMv1’s long-term climate was assessed using sim-
ulations with the default (30 min) and shortened (5 min) timestep where significant changes in cloud fraction
and cloud forcing were seen in the subtropical and tropical regions (Zhang et al., 2019b). To attribute the
timestep sensitivity, we performed 10-year simulations using various configurations of the process coupling
and substepping. The most intriguing findings were that the observed timestep sensitivity in the fraction of
low clouds was caused not by the turbulence, shallow convection and cloud macrophysics parameterization
CLUBB but rather by the timestep size used in deep convection and its coupling with dynamics, (ii) the
observed timestep sensitivity in the fraction of high clouds was caused by the substepping of CLUBB and
cloud microphysics rather than deep convection which is an important source of ice clouds. The dynamics
substepping within a physics-dynamics coupling timestep (default is 30 min) was found to have little impact
on the model climate, a conclusion that is consistent with the relatively small time-stepping error in the
dynamical core observed in short-term convergence tests (Figure 1c). These results further confirmed that
the parameterizations are the main source of timestep error in EAMv1. They also suggest that there are
complex interactions among the parameterizations that warrant further investigation.

Physics-dynamics coupling: The displacement of the simulated marine subtropical stratocumulus decks
from where they are observed in the real world is a signature of model biases in EAMv1 and other U.S.
models (Koshiro et al., 2018). We conducted a sensitivity experiment for the years 2007-2009 in which
the horizontal winds in the model were constrained by nudging them toward the Modern Era Retrospec-
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Figure 4. New time integration method 
improves solution accuracy and 
convergence in an advection-diffusion 
problem regardless of the characteristics 
of the stochastic forcing. (See poster by 
Stinis et al.).

A Deterministic PDE Perspective
• Addresses issues in current EAM
• Formal error analysis confirms 

expected convergence rate and 
reveals potential pitfalls 

• Short-term convergence tests 
and sensitivity experiments 
pinpoint problematic code

• Alternative numerical methods 
improve convergence and 
accuracy

(See poster by Woodward et al.)
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Figure 4. (a) Solution RMSE and self-convergence after 1 h of integration using the baseline model (blue)
and the model with revised splitting (red). Like in Figure 3, color shading shows the two standard devia-
tion range of the RMSE’s of 6 ensemble members; the numbers in parentheses are the 6-member mean and
standard deviation of the convergence rates. (b) Histograms of |�T | in individual grid boxes between the
simulations using �tphys = 8 s and �tphys = 1 s, shown for ensemble member 1 after 1 h of integration.
The baseline model (blue) and the model with revised splitting (red) are described in Sections 3.3 and 3.4,
respectively.
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Figure 5. Solution RMSE and self-convergence rate after 1 h in (a) the baseline model (Sections 3.3) and
(b) the model with revised splitting (Section 3.4). Only the simulations performed with the first set of initial
conditions are shown here; other ensemble members show very similar results and hence are not presented
here. Light blue marks show solution errors averaged over all grid boxes; brown and green are solution errors
averaged over grid cells in which |�T | between the simulations using 8 s and 1 s step size fall into specific
ranges (see labeling in each plot). Numbers in parentheses are the convergence rates. The percentage of grid
boxes falling into each range of |�T | is also shown.
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Figure 3. Solution error and self-
convergence in 1 h simulations 
using EAM’s dynamical core 
coupled with a simplified cloud 
parameterization. Vertical bars 
indicates ensemble spread.

Figure 6. More substeps for cloud 
macro- and microphysics in EAMv1 
lead to substantial decrease of cloud 
amount (total cloud water path), 
suggesting these parameterizations 
need more accuracy.
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Figure 9. Left column: zonally averaged (a) total cloud cover, (b) longwave cloud radiative effect, and (c)
shortwave cloud radiative effect in climate simulations conducted using the CAM4 physics parameterization
suite. Blue corresponds to the baseline model that uses Eq. (26) and the revised revised splitting (Eq. 33),
respectively. Right column: the differences between the two simulations (revised splitting minus baseline).
Solid lines are 10-year averages; color shading indicates the ±� range where � is the standard deviation of
the annual averages.
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Figure 5. Code changes that 
restored convergence in 
Figure 3 lead to substantial 
changes in the zonal and 
annual mean cloud fraction.

EAMv1EAMv0

The team: Hui Wan1, Carol S. Woodward2, Michael Brunke3, Vince Larson4, Huan Lei1, Jing Li1, Phil Rasch1, Balwinder Singh1, Jeremy Sousa3, Panos
Stinis1, Chris Vogl2, Xubin Zeng3, and Shixuan Zhang1 (1PNNL, 2LLNL, 3U. Arizona, 4U. Wisconsin – Milwaukee)

This work was performed under the auspices of the U.S. Department of Energy by Pacific Northwest National Laboratory under Contract DE-AC05-76RL01830 and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Figure 1: (a): Global mean shortwave cloud forcing change (�SWCF) caused by a globally uniform 4 K increase in sea surface
temperature, simulated by EAMv0 using 5 min (light green) or 30 min (default, blue) timesteps. The height of each bar indicates
the average over 10 model years. The whiskers indicate the ±‡ range where ‡ is the standard deviation of yearly results. (b) and
(c): Timestep error in air temperature (y-axis) and solution self-convergence rate (numbers in parentheses) in 1 h global simulations
conducted with EAMv0 and EAMv1, respectively. The definition of the timestep error follows Wan et al. (2015).

v1 converge at the expected rate of 1.0 but the full models converge at substantially lower rates of 0.3 or
0.4. This suggests that the parameterizations or their coupling to dynamics are the primary causes of the
undesirable numerical properties. Poor convergence hence provides a pointer to places in the model where
improvements are needed to reduce numerical artifacts and uncertainty in future climate simulations.

The E3SM model is designed (and being updated) with the Department of Energy’s (DOE’s) leading-
edge computers in mind. The E3SM project will focus on high-resolution modeling in the next years.
Smaller timesteps will become necessary for maintaining stability of explicit schemes in the dynamical
core. For the parameterizations, model developers generally have the inclination to retain large step sizes
or only mildly shorten them to save computational cost, but a recent example from E3SM itself has shown
that this could cause unacceptable numerical errors (Zhang et al., 2018). To reap the most benefits from
the extra computational cost that comes with the necessary reduction of step size at higher spatial
resolutions, time integration schemes with higher order are desirable. It is therefore urgent to improve
solution convergence.

Another goal of the E3SM project is to quantify Earth system uncertainties using ensemble modeling,
for which a method to generate representative ensembles is a key. While the climate modeling community
has started some efforts to create climate projection ensembles by perturbing initial conditions (Kay et al.,
2015), experience in numerical weather prediction has shown that such methods often give insufficient
spread among the ensemble members. The E3SM project does not yet have a concrete strategy for perturb-
ing its currently deterministic simulations. In Phase 1, we identified terms in the equations of EAMv1’s
turbulence and cloud macrophysics parameterization that can be potential candidates for a stochastic formu-
lation (Sect. 4.4). A computationally efficient time integration method was developed for physics-dynamics
equations with state-dependent stochastic forcing and was evaluated in prototype problems (Sect. 3.6). Al-
though our work in this aspect only addresses one (among many) of the sources of model uncertainties,
namely those associated with time integration errors, it can be a useful step toward the E3SM project’s
long-term plan for ensemble modeling.
1.2 Programmatic Relevance

As explained in Sect. 1.1, timestep error in atmospheric physics parameterization is a major contributor
to numerical uncertainties in EAM’s climate change simulations and poor convergence can hinder efficient
use of computing resources in high-resolution simulations. Our efforts aiming at addressing these issues,
are therefore directly relevant to DOE Office of Biological and Environmental Research (BER) Climate and
Environmental Sciences Division’s (CESD’s) vision to “develop an improved capability for Earth system
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