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Abstract

We propose a feed-forward artificial neural net-
work (ANN) as an extrapolation tool to obtain
the ground-state (GS) energy and the GS point-
proton root-mean-square (rms) radius along
with their extrapolation uncertainties based on
data calculated with the No Core Shell Model
(NCSM). The designed ANNs produce results for
these two very different observables in 6Li that
satisfy the theoretical physics condition: indepen-
dence of basis space parameters in the limit of
extremely large matrices.

Motivation

•Extrapolate results from NCSM calculations on
High Performance Computing (HPC) machines to
ultra-large basis spaces

•Quantify the extrapolation uncertainties
•Guide programs at DOE’s major experimental
facilities (FRIB, JLab, DUSL)

Introduction

The NCSM casts the nuclear quantum many-body
problem as a Hamiltonian matrix eigenvalue prob-
lem expressed in a chosen, but truncated, basis
space. Our three-dimensional harmonic-oscillator
(HO) basis is characterized by the HO energy, ~Ω,
and the many-body basis space cutoff, Nmax (de-
fined as the maximum of the sum over all nucleons
of their HO quanta above the minimum needed to
satisfy the Pauli principle). Extrapolation tools are
needed to estimate the converged results for eigenen-
ergies and other observables as well as to quantify
their uncertainties.

ANN design and filtering

1 Through experimentation, select a simple network design for initial applications (see Fig. 1)
2 Divide available NCSM results for 6Li into training (90% of data) and testing (10% of data) sets
3 Train/test ensemble of ANNs and retain the 50 that best exceed minimum performance criteria
4 Develop histograms of results from best performers as function of increasing data set sizes (see Fig. 2)
5 Obtain extrapolation (mean) and uncertainty (standard deviation) from a Gaussian fit to each histogram

Current ANN design

Design features of our feed-forward ANN include
Bayesian regularization, hyperbolic tangent sigmoid
function for the activation function of the hidden
layer, and randomly splitting the original data set
for each ANN into 16/19 (for training/testing) and
3/19 for a post assessment of its performance.
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Figure 1: Neural network used to extrapolate
the 6Li GS energy and point-proton rms radius
from currently achievable NCSM basis spaces (Nmax
datasets) to extreme basis spaces that attain basis
parameter independence.

Extrapolations from best
performing ANNs

As shown visually and in the labels (listing the
means and standard deviations) of Fig. 2, we
demonstrate reasonable consistency of ANN predic-
tions with increasing Nmax. This quantifies the util-
ity of ANNs for heavier nuclei where only lower Nmax
basis spaces are attainable.

§ Guides experimental programs at DOE’s rare 
isotope facilities

§ Extends the predictive power of ab initio nuclear 
theory beyond the reach of current high 
performance computing simulations

§ Establishes foundation for deep learning tools in 
nuclear theory useful for a wide range of 
applications

Significance and ImpactScientific Achievement

• Develop ANNs that extend the 
reach of high performance 
computing simulations of nuclei

• Predict properties of nuclei based 
on ab initio structure calculations 
in achievable basis spaces

• Produce accurate predictions of 
nuclear properties with 
quantified uncertainties using 
fundamental inter-nucleon 
interactions such as Daejeon16
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§ Developed artificial neural networks (ANNs) for extending 
the application range of the ab initio No-Core Shell Model 
(NCSM)

§ Demonstrated predictive power of ANNs for converged 
solutions of weakly converging simulations of the nuclear 
radius

§ Provided a new paradigm for matching deep learning with 
results from high performance computing simulations
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Neural network (above) used to successfully 
extrapolate the 6Li ground state energy and rms
radius from modest basis spaces  (Nmax datasets) 
to extreme basis spaces achieving basis  
parameter independence (histograms of  
extrapolation ensembles in right figure).

Figure 2: Distributions of the predicted GS energy
(left) and GS point-proton rms radius (right) of 6Li
produced by 50 best-performing ANNs trained with
ab initio NCSM data at increasing levels of trunca-
tion up to Nmax = 18. Each ANN predicted GS
energy (GS point-proton rms radius) is obtained at
Nmax = 70 (90).

Discussions and outlook

1 ANNs extend the predictive power of ab initio
nuclear theory beyond the capabilities of current
HPC machines

2 We will expand the range of applications to
include electroweak moments and transition rates
as well as scattering cross sections
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