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In order to develop predictive capability, high-fidelity models for both the edge
plasma and material PFCs must be coupled together. We plan to study the
physics as well as the dependence of simulation performance on the choice of
numerical coupling algorithm. Our main focus will be on simplified slab and
cylindrical geometry, which nonetheless can handle the most important effects of
toroidal geometry: magnetic field line pitch and field line curvature k.

Goal: Determine the erosion rate of material surfaces that are impacted by large
transient events such as ELMS.
Approach: Simulate heat pulse propagation using the 4D guiding center kinetic
COGENT code [1]. Determine under what conditions energetic particle tails are
found to form and whether kinetic effects impact quantitative results. Eventually,
couple to sheath model (hPIC [2]) and erosion model (Fractal-TriDYN [3]).

Goal: Determine the impact of turbulence on the dynamic recycling of main ions
and the impact of coupled plasma-wall models on plasma turbulence.
Approach: Study the coupling between wall codes and plasma codes in 2D and
3D. Develop a divertor-relevant model of plasma turbulence within the BOUT++
framework [4] to couple to wall codes (FACE [5], Xolotl [6]).

Approach
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The PSI SciDAC is developing coupled models for the dynamic interaction
between plasma and material surfaces at the edge of a magnetically confined
fusion energy reactor. Our goals are to determine the importance of intermittent
transient events such as edge localized modes (ELMs) on impurity production
and material erosion and to understand how plasma turbulence impacts the
dynamic recycling of main ions and impurities between the plasma and material
surfaces. Hence, we are developing a model of ELM heat pulse using the 4D
guiding center COGENT kinetic code and a model of divertor plasma turbulence
using the 3D BOUT++ framework. Ultimately, we will couple these models
together with microscopic models of the walls and study the physics of the
coupled system.

BOUT++ Divertor Turbulence Model
Divertor turbulence has characteristics of curvature-driven drift-resistive ballooning
modes (DRBM) at the midplane and electron temperature (Te) gradient driven
conducting wall modes (CWM) in the pre-sheath region near the divertor target.

Linear tests have been performed verifying accuracy of the growth rates and real
frequency of the DRBM and CWM modes.

Motivation
ITER will be the first tokamak to achieve Q>10 and produce 500 MW of fusion
power. An important goal of the PSI SciDAC is to develop models that predict the
performance of divertor plasma facing components (PFC) with respect to impurity
production and material migration, because these surfaces are exposed to
extreme particle and heat loads. However, such predictions are challenging
because they require multiphysics models that span many orders of magnitude in
spatial and temporal scales.

Divertor Turbulence

Moreover, the plasma fluxes are dominated by intermittent and turbulent events,
such as ELMs, which are intense filamentary structures that are ejected from the
core to the edge. Fundamental research questions are: Do plasma-wall
interactions cause new types of coupled oscillations & instabilities? Will plasma-
wall interactions change the character of turbulence near material surfaces?
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Fluid neutral model equations

Test 1: drift plasma turbulence 
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Steady state is achieved via explicit time-
dependent coupling of plasma & wall codes.
Plasma model has fixed fraction of Nitrogen
impurities that help to radiate the input heating
power of Q=6 MW/m2. Wall model has single
type of H traps (Edt=0.9eV) and Dirichlet
temperature BC (500 K). BCs have perfect
recycling, but particles require 2eV of energy to
penetrate the wall. Detachment is observed as a
rollover in flux as upstream density is increased.

ELM is simulated as dynamic heat source with
peak Q=90MW/m2 and Ni=1018/m3. During the
ELM, the target plates initially absorb particles,
but, as the PFCs absorbs heat and the wall
temperature rises, strong outgassing is produced
and the steady-state conditions are recovered.

We are exploring the physics of coupled plasma and wall models. Here, we show
results for dynamic ELM and steady-state simulations using simplified models: the
2D UEDGE [10] edge plasma transport code and the 1D FACE wall model [5].

Dynamic Plasma-Wall Coupling

Conclusions

Kinetic ELM heat pulse benchmarks have been reproduced
- Results compare well to previous fluid and kinetic studies
- Future work will extend to two kinetic species: both ions and electrons

Divertor-relevant turbulence model is being developed within BOUT++
framework
- Model passes linear tests for growth rate and real frequency of fastest growing
eigenmodes including both curvature and sheath driving terms
- Model is being pushed into the nonlinear regime in order to predict the interaction
between turbulence and wall recycling

Coupled plasma and wall codes illustrate the dynamics of particle recycling
and detachment during transient ELM events and steady state conditions
- Both steady-state & complete ELM cycle were simulated for small transient events
- Future work will focus on coupling more complex plasma and wall models

The PSI SciDAC is developing dynamically coupled plasma-wall models
- Ultimate goal is to predict the dynamic recycling of main ions and impurity ions
between plasma and plasma facing components as well as the erosion of material
surfaces that are impacted by large transient events such as ELMs

ELM pulse
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Results: ELM Heat Pulse
In our study [7] COGENT solves the guiding center kinetic equations:

The ELM heat pulse benchmark [8-9] is specified by imposing Maxwellian source 
with T=1.5 keV and S=9.1x1023/m3; initial conditions chosen to match Ref. [9].
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Results for 0.4 MW ELM pulse
lasting 200µs yield a peak Q||
~4.3 GW/m2 at 200µs

JET-like SOL
Bt = 3 T, Bp = 0.3 T
R = 3 m, 2 L|| = 80 m
Nped =5x1019 m-3, Tped =1.5 keV

-Distribution function has non-
Maxwellian tail ~ fMax/v||
-Sonic outflow near target plates
à transition to ½ Maxwellian

Kinetic ions & Boltzmann 
electron benchmark case:
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This is extremely challenging: 
explicit time integration requires 
~105 time steps due to the Alfven 
wave. We are developing a 
general ARK explicit-implicit 
(Jacobian-free Newton Krylov) 
time integration scheme to handle 
these issues.
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