Effect of Helium Flux on Helium Accumulation in Near-Surface Tungsten
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Motivation Results = pmbiscussion .
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Provide experimentally relevant (~10 He/m?/s) microstructure evolution due e R e Qualitative behavior of He accumulation with decreasing flux for (100) & (111) surfaces is same

to He accumulation W subsurface for benchmarking the PFC simulator XOLOTL® 06 e — 0.8
and for MD evaluation of W thermomechanical properties for (100), (111) and I W(100) Surface I | o om s
(110) surfaces. k- 1222;: Zz | 10%me
Upgrade Object Kinetic Monte Carlo (OKMC) code KSOME?
Perform longtime (>1 ms) under (a) isothermal conditions (Hmode) (b) and
transient conditions corresponding to plasma ELMs
Extending the time and length scales of KSOME (spatial decomposition and
parallel processing)

- Retention decreases and becomes constant with fluence at low flux. (Panel 1)

- The same behavior is expected when the depth dependent trap mutation events are
included. However, lowest flux required for the same behavior also decreases.

- He accumulation shifts away from the surface and into the bulk (Panels 2-4).

- The depth distribution of areal densities become less peaked and more broader. This shift
is drastic when the flux is lowered from 10%to 1083He/m?/s.
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Differences

- Retention for (111) surface is higher (Panel 1).

- Cumulative depth distribution of retained He within the simulation cell appear to be close
to each other. (Panel 2) However, the fraction of retained He escaping into the bulk with
decreasing flux is higher for (100) surface.

It is likely of the difference in the He accumulation between (111) and (100) surfaces is due
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______ AT AT A A AT A T T T .E to the differences in the He implantation profiles (not shown)
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- Depth dependent trap mutation processes were NOT included. +2. bump time and return to +0., or halt @ (backtracking)
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