

FASTMath: UQ Algorithms

FASTMath UQ Team Members: T. Casey, B. Debusschere, M. Eldred, G. Geraci, R. Ghanem, J. Jakeman, Y. Marzouk, H. Najm, C. Safta, and K. Sargsyan

The SciDAC FASTMath uncertainty quantification (UQ) team works on development of robust UQ methods and software, necessary for predictive large-scale computational modeling in applications of relevance to DOE/SC. Working on SciDAC partnership projects, we focus on hardening and adapting UQ capabilities to provide effective solutions according to project needs.

Low-Rank tensor train surrogates for highdimensional computational models

Deploy surrogates that exploit structure in parameter to output map seek low-rank functional tensor-train (LRFTT) representation to reveal couplings in high-dimensional models.

- Approach is analogous to low-rank tensor decompositions
- · Flexibility when choosing univariate functions
 - · Can combine both spectral and kernel representations
- Model fitting using Stochastic Gradient Descent

$$\mathcal{F}_{k}(x_{k}) = \begin{bmatrix} f_{k}^{1,1}(x_{k}) & \cdots & f_{k}^{1,r_{k}}(x_{k}) \\ \vdots & \ddots & \vdots \\ f_{\nu}^{r_{k-1},1}(x_{k}) & \cdots & f_{\nu}^{r_{k-1},r_{k}}(x_{k}) \end{bmatrix}$$

Total effect Sobol indices for Leaf Area Index (left) and Gross Primary Production (right) extracted from the LRFTT surrogate

Surrogates for dependent random variables

- Building accurate approximations of models with dependent random variables is challenging.
- Building approximations using samples from the probability measure is ill conditioned.
- We build polynomial chaos interpolants using Leja sequences, which are nested samples from the induced distribution that focus samples in high probability regions while maintaining stability.

For a fixed budget, our approach can obtain errors which are orders of magnitude smaller than those obtained using existing methods

Sampling discrete random variables

- Define polynomial chaos expansion (PCE) basis functions orthogonal w.r.t. standard probability masses
 - e.g. Charlier, Hahn, Krawtchouk
- Generate set of candidate samples
 - Nested samples in high-probability regions
- Compute Leja sequence via pivoted LU decomposition

Errors between model values and PCEs constructed using Monte Carlo and Leja samples for a standard test problem (Genz oscillatory)

Parameter inference in chaotic systems

- Pointwise distances no longer useful in chaotic systems where trajectories become uncorrelated after finite time
- Classical approaches compare milestones of the trajectories to quantify shape changes
- · Formalize these ideas using manifold learning, diffusion maps
- Compare trajectories in the coordinates defined by the diffusion map

W₂ Low-dimensional embedding of attractor manifold structur

L2 distance vs. KL-divergence

Lorenz63 trajectories for small changes in parameters,

overall trajectory structure is essentially unchanged

Model error quantification and propagation

Bavesian framework for *embedded* model structural error representation, propagation and attribution

- Polynomial Chaos representation of embedded structural error corrections
- Simultaneous estimation of physical parameters and model error
- Predictive variance attribution to model error, data noise and surrogate error
- Workflow implemented in UQ toolkit (www.sandia.gov/uqtoolkit)

E3SM Land Model (BER partnership) Plasma Surface Interactions (FES partnership) Chemical kinetic modeling (funded by BES) Turbulence modeling (funded by DARPA)

Method: Sargsvan, Naim, Ghanem, LICK, 2015; Sargsvan, Huan, Naim, LIUO, 2019

Applications: Huan et. al, AIAA J, 2018; Hakim et. al, CTM, 2018; Cekmer et. al, IJUQ, 2018; Rizzi et. al, CMAME, 2019

Multifidelity strategies for forward UQ

- At the state-of-the-art all the multilevel/multifidelity strategies assume a priori a hierarchy among models
- From a practical standpoint this corresponds to recursive sampling strategy
- A recursive sampling approach (e.a. MLMC and MFMC) limits the maximum achievable variance reduction to the one obtained by a single known LF model (i.e. OCV-1)
- We designed several Approximate Control Variates (ACV) schemes that overcome this issue and attain a larger variance reduction for a fixed computational budget. They converge to the Optimal Control Variate (OCV) estimator

Three models tunable test case: correlations among the three models are controlled by a single parameter. ACV estimators have the potential to converge to the variance reduction of OCV, whereas recursive sampling approaches (MLMC and MFMC) converge only to OCV-1

Variance reduction obtained for the ACV and recursive estimators under several cost scenarios. The cost of an evaluation is 1 for HF, and (1/w,1/w²) for the LF models

Rate-optimal local approximation MCMC

Continual refinement of surrogate models within MCMC

- Useful for Bayesian inference with computationally intensive models
- Yet previous methods, while asymptotically exact, left balance between surrogate error and Monte Carlo error uncontrolled
- New approach:
- Rate-optimal refinement strategy balances bias and variance of sample estimator at
- Lyapunov function correction ensures convergence for heavier tails, improves

FASTMath-UQ partnerships

Partnership project title	Funding office
Plasma Surface Interactions: Predicting the Performance and Impact of Dynamic Plasma Facing Component Surfaces (PSI2)	SC-FES/ASCR
Optimization of Sensor Networks for Improving Climate Model Predictions (OSCM)	SC-BER/ASCR
Probabilistic Sea Level Projections from Ice Sheet and Earth System Model (ProSPect)	SC-BER/ASCR
Simulation of Fission Gas in Uranium Oxide Nuclear Fuel	NE/ASCR

More Information: http://www.fastmath-scidac.org or contact Habib Najm, Sandia National Labs, hnnajm@sandia.gov, 925-294-2054

