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FASTMath: UQ Algorithms

The SciDAC FASTMath uncertainty quantification (UQ) team works on development of robust UQ methods and software, necessary for

predictive large-scale computational modeling in applications of relevance to DOE/SC. Working on SciDAC partnership projects, we focus on
hardening and adapting UQ capabilities to provide effective solutions according to project needs.
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Sampling discrete random variables E3SM Land Model (BER partnership) Partnership project title Funding offices

. i i i Wi Plasma Surface Interactions (FES partnership) Plasma Surface Interactions: Predicting the Performance and Impact | SC-FES/ASCR
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basis functions orthogonal w.rt. standard o] : Chemical kinetic modeling (funded by BES) of Dynamic Plasma Facing Component Surfaces (PSI2)

probability masses il - it Turbulence modeling (funded by DARPA) Optimization of Sensor Networks for Improving Climate Model SC-BER/ASCR
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» Nested samples in high-probability regions W > >
« Compute Leja sequence via pivoted LU Errors between model values and PCEs Method: Sargsyan, Najm, Ghanem, IJCK, 2015; Sargsyan, Huan, Najm, 1JUQ, 2019 Simulation of Fission Gas in Uranium Oxide Nuclear Fuel NE/ASCR

d sy constructed using Monte Carlo and Leja samples, Applications: Huan et. al, AIAA J, 2018; Hakim et. al, CTM, 2018; Cekmer et. al, IJUQ, 2018; Rizzi et. al, CMAME, 2019

ecom p05|t|on for a standard test problem (Genz oscillatory)
More Information: http://www.fastmath-scidac.org or contact Habib Najm, Sandia National Labs, hnnajm@sandia.gov, 925-294-2054
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