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Data Reduction for Large Scale Ensemble Cosmological Simulations

Scientific Achievement
« Enable scientists to reduce the storage space requirement when running large
ensemble simulations, while still make it possible to perform full scale
simulation parameter exploration for post-hoc analysis
« Enable scientists to compress particle data from large scale N-Body
cosmological simulations at a controllable space-quality tradeoff while
preserving essential domain

Quantitative Image Analysis Using Deep Learning

Scientific Achievement
Adaptation of a state-of-the-art deep learning-based image
segmentation method enables feature detection in noisy data
from an atomic force microscope.

Significance and Impact
The new image analysis pipeline, which includes the DL-
based method, will automate a previously manual analysis
methodology, enabling more rapid understanding of
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of the IDREAM EFRC.

stages of cosmic evolution (redshift = 20) end of cosmic evolution (redabift = 0)
. The new process is capable of finding, tracking, and

e ™ o i g oo, analyzing hundreds-thousands of features in image
. o sequences. Previous results use manual analysis of a
handful of features.

Significance and Impact

« Using GMM-based statistical signatures, it is possible to save only a small
portion of data from large scale ensemble run. Post-hoc analysis is done by
reconstructing simulation output of novel parameters from the statistics
signatures. Experiments shown that the space saving can be more than 99%

« GMMs are shown to be effective to represent particle clusters in cosmological Images produced by our
simulations. The reconstructed data from GMMs show very high accuracy in super resolution representations
domain specific metrics such as Halo Mass Functions and Power Spectrum,
when data are compressed to 1/200 of their original size.
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Research Details

We adapt a deep learning network, U-net, for use in finding
features in noisy data from an atomic force microscope, part

Research Details
Ensemble Data Exploration

« Store a small number of simulation results at full resolutions into a code book as
prior knowledge

Above: comparisons between the raw data (top row) and GMM
reconstructed data (bottom row).
Below: comparisons of rendering from raw data (left) and our method

- Down sample the remaining data into GMMs as the statistical signatures (right). The space saving is 200 times. Quote from stakeholder J. De Yoreo: “This is exactly what we
- Data at an arbitrary parameter configuration can be reconstructed from the 52 (4.5%) Ours (0.44%) need to crack open a bunch of [challenging scientific]
prior knowledge and the statistical signatures problems.”
* The priori knowledge only takes 0.44% of the original data for a cosmology ”
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CANGA: Coupling Approaches for Next Generation Architectures Parallel Event Generation and Analysis with DIY

Scientific Achievement Scaling of ttbar production and analysis on KNL
. - . . . - 2 million events, 68 ranks/node
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Visualization of Antarctica LAND Ice Performance Analysis for Large
Using Visual Analytics to Understand Neural Network Scale Simulations

Classifications of Imagery for Genetic Engineering Scientific Achievement

Used time series data, ParaView, and

Scientific Achievement

Scientific Achievement Profiling simulation features instead of function call is a novel way of looking of

CrossVis visual analytics capabilities help explain and enhance an pore e Arma 1 Expectes Gausman Pers Denay Do P o Tomt A Gevsmin S 3 Varance (s streamlines .to show how groupded ice at simulation performance.
Artificial Neural Network (ANN) approach for classifying scanning ot o s A . G . LB flows and thins on the Antarctic continent Significance and Impact
electron microscope (SEM) imagery. RN in response to ice sheet loss in support of _ _ .
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This collaboration demonstrates the advantages of combining interactive ¢ AT e rm - 2 WO e i Significance and Impact
essential for better understanding of

visual analytics methods with statistical data analytics to explain and

improve artificial intelligence (Al) processes. § Visualization of key ideas in the science of the world around us.
— — — ] 1] M land ice is key for science understanding
Research Details CrossVis selection of SEM images classified as MODIFIED reveals the significance of pore W|th_|r.' the climate r.esearCh commupltles n Profilina tool v all t
ORNL CNMS scientists used an ANN process to classify whether SEM features. addition to supporting communication rofifing tools only afllow us to see
images corresponded to genetically modified diatoms or not. climate science to the general public. performance issue related to code
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filtration, and drug delivery.
CrossVis interactive visual analysis capabilities reduced the mystery of

This model can help HPC personnel,
software engineers, and scientists

While graphs, such as barcharts, ... are
useful to show the quantitative

the “black box” ANN process. | 2 implications, they do not show the impact  Evolution of West Antarctic Ice with an better understand simulation 3%
Scientists gained a deeper understanding of the process, improvement o~ o - oo S - o & i as clearly as visualizations. extreme loss of any floating ice over a 200 performance and figure out how to : s :
ideas, and new trust in Al. Two SEM images with high variance (outliers) year period. improve efficiency or simulations by |;| nk;; on1'g nods
A Nature Partner Journal (npj Comp. Materials) article was recently are visually analyzed for multivariate correlations. linking performance analysis to 9

with papi counter: Conditional branch
instructions correctly predicted

published (6/13) on this collaborative endeavor. simulation features

Using Visual Analytics to Explain Al Processes: CrossVis is a visual analytics tool that integrates statistical
analytics and an extended version of parallel coordinates to allow flexible exploratory of large and heterogenous

multivariate data. CrossVis is available at https://github.com/ORNL/CrossVis. (Image Credit: Chad Steed) Research Details Research Details
) 22{:‘2‘:{::“9 with the PROSPECT SciDAC to visualize Ice sheet evolution in - Use in situ analysis to look at performance counters instead of simulation features

- All to ch hich perf t I t at diff t
- Leveraged and improved ParaView, one of the Office of Science tools, for this work Ow users 1o choose which periormance counters are more reievant at ditieren
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