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CANGA: Coupling Approaches for Next Generation Architectures

Scientific Achievement
CANGA: New high-performance coupling approaches and 
capabilities for coupled Earth System Models on next 
generation computing architectures

Significance and Impact

Coupling external high-performance and load-balanced 
Lagrangian particle tracing codes with climate models 
offloads extreme-scale data analysis and visualization.  The 
decoupled workflow based on Decaf  simplifies compilation, 
improves performance, and enables scalable analysis

Research Details
• Decoupled Lagrangian particle tracing for MPAS-Ocean 

model using Decaf  dataflow system
• Load balanced Lagrangian particle tracing based on 

dynamic, constrained graph decomposition that enables 
scalable flow analysis and visualization

• Load balancing for unstructured data using graph 
distance based embedding and constrained k-d tree  

• Load balancing for Lagrangian particle tracing using 
workload prediction based on linear and higher order 
predictions

• Goal: Develop general methods to achieve better load 
balancing on unstructured meshes

• Goal: incorporate ensemble and stochastic flow analyses 
that build upon Lagrangian particle tracing

• Goal: enable coupled data analytics across multiple 
climate models

Mukund Raj, Hanqi Guo, and Tom Peterka (ANL)
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Preliminary timing results for MPAS-Ocean 
built-in particle tracer (LIGHT), and data 

movement using Decaf

Constrained graph partitioning  for 
dynamic load balancing particle 
tracing with unstructured data

Preliminary timing results for constrained 
graph partitioning using BFS expansion

[1] Guo et al., IEEE TVCG, 2019 (In Preprint)
[2] Zhang et al., IEEE TVCG, 21(1):954-963, 2018
[3] Zhang et al., IEEE PacificVis, 2018
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Coupling MPAS-O with particle tracer 
using Decaf

Imbalance in particle distribution (top) and 
advection workload (bottom) for synthetic 

data in prediction and baseline cases

Scientific Achievement
Fermilab researchers developed two HPC parallel codes using the DIY 
programming model.
- Pythia8 generates Monte Carlo (MC) events [1]
- Feldman-Cousins correction compares experiments with simulated events [2]

Significance and Impact
HEP workflows require generating and analyzing vast numbers of  MC events. DIY 
efficiently utilizes HPC resources and HEP community tools.

Research Details
Block parallelism with DIY encapsulates communication in a block-processing 

application.
Allows for extremely short turn-around of  large parameter space explorations 

(e.g. generator tuning)
Paves the way for new and advanced optimization algorithms, e.g. LHC search 

analyses.

Parallel Event Generation and Analysis with DIY

[2] Sousa et al., CHEP 2018. 

Near-perfect weak scaling of  Feldman-Cousins DIY code 
on up 768 Ivybridge cores on Edison.Work was performed at Argonne and Fermilab under SciDAC

HEP on HPC Partnership. Images courtesy of  Holger Schulz, 
U. Cincinnatti and FermiLab

[1] Hoche et al., arXiv 2019. 

Event generator model for proton-proton 
collision: 

Robust predictions of  collider events are 
needed to search for new physics 
effects. Much of  the dynamics is 
described by tunable parameters. The 
calculation of  event generator 
predictions is expensive, and must be 
done for each choice of  parameters. A 
full detector simulation of  these 
calculations is even more expensive, 
requiring parallel HPC codes.

Strong scaling of  the HEP’s Pythia8 event simulation with ASCR’s 
DIY up to 8704 KNL cores on Cori. The deviation from ideal scaling 
is due to diminishing work per core at high core counts.

Work was performed at Argonne under SciDAC CANGA 
Partnership. Images courtesy of  Mukund Raj, ANL.

Scientific Achievement
Adaptation of  a state-of-the-art deep learning-based image 
segmentation method enables feature detection in noisy data 
from an atomic force microscope.

Significance and Impact
The new image analysis pipeline, which includes the DL-
based method, will automate a previously manual analysis 
methodology, enabling more rapid understanding of  
experimental data.

Research Details
We adapt a deep learning network, U-net, for use in finding 

features in noisy data from an atomic force microscope, part 
of  the IDREAM EFRC.

The new process is capable of  finding, tracking, and 
analyzing hundreds-thousands of  features in image 
sequences. Previous results use manual analysis of  a 
handful of  features. 

Quote from stakeholder J. De Yoreo: “This is exactly what we 
need to crack open a bunch of  [challenging scientific] 
problems.”

RAPIDS DU Personnel: O. Rübel, T. Perciano, R. Sadre, W. 
Bethel.

IDREAM EFRC Personnel: J. De Yoreo, S. Zhang 

Quantitative Image Analysis Using Deep Learning

Figures: Raw data from the AFM is quite noisy (upper left), and difficult to process. 
A deep-learning based image segmentation method identifies nanorod features 
(upper middle). After computing nanorod position and orientation (upper right), 
we produce charts showing nanorod sizes over time (lower left) and a radial 
histogram showing orientation of  rods (lower right).

Scientific Achievement
• Enable scientists to reduce the storage space requirement when running large 

ensemble simulations, while still make it possible to perform full scale 
simulation parameter exploration for post-hoc analysis

• Enable scientists to compress particle data from large scale N-Body 
cosmological simulations at a controllable space-quality tradeoff  while 
preserving essential domain

Significance and Impact
• Using GMM-based statistical signatures, it is possible to save only a small 

portion of  data from large scale ensemble run. Post-hoc analysis is done by 
reconstructing simulation output of  novel parameters from the statistics 
signatures. Experiments shown that the space saving can be more than 99%

• GMMs are shown to be effective to represent particle clusters in cosmological 
simulations. The reconstructed data from GMMs show very high accuracy in 
domain specific metrics such as Halo Mass Functions and Power Spectrum, 
when data are compressed to 1/200 of  their  original size.

Research Details
Ensemble Data Exploration
• Store a small number of  simulation results at full resolutions into a code book as 

prior knowledge 
• Down sample the remaining data into GMMs as the statistical signatures
• Data at an arbitrary parameter configuration can be reconstructed from the 

prior knowledge and the statistical signatures 
• The priori knowledge only takes 0.44% of  the original data for a cosmology 

simulation using Nyx 

Data Reduction for Large Scale Ensemble Cosmological Simulations

Images produced by our 
super resolution representations

Above: comparisons between the raw data (top row) and GMM 
reconstructed data (bottom row).
Below: comparisons of  rendering from raw data (left) and our method 
(right). The space saving is 200 times. 

GMM-based Particle Compression
• A k-D partitioning is employed based on the GMM 

quality requirement and the desired final space 
consumption

• Spatial GMMs are used to transform the particle data 
into Gaussian Mixtures. Domain specific metrics are 
used to verify the quality, and an iterative refinement 
algorithm is used to adjust the paritions of  particles 
and number of  Gaussians. 

Quantitative Evaluation: Comparing our method with four 
different compression methods 

Scientific Achievement
CrossVis visual analytics capabilities help explain and enhance an 
Artificial Neural Network (ANN) approach for classifying scanning 
electron microscope (SEM) imagery.

Significance and Impact
This collaboration demonstrates the advantages of combining interactive
visual analytics methods with statistical data analytics to explain and 
improve artificial intelligence (AI) processes.

Research Details
ORNL CNMS scientists used an ANN process to classify whether SEM 

images corresponded to genetically modified diatoms or not.
Diatoms are unicell alga with significant implications for photonic, 

filtration, and drug delivery.
CrossVis interactive visual analysis capabilities reduced the mystery of 

the “black box” ANN process.
Scientists gained a deeper understanding of the process, improvement 

ideas, and new trust in AI.
A Nature Partner Journal (npj Comp. Materials) article was recently 

published (6/13) on this collaborative endeavor.

Using Visual Analytics to Understand Neural Network 
Classifications of Imagery for Genetic Engineering

Ovchinnikova et al., “Deep Data Analytics for Genetic Engineering of Diatoms Linking Genotype to Phenotype via 
Machine Learning,” npj Comp. Materials, 5:4, 2019. doi:10.1038/S41524-019-0202-3.

Using Visual Analytics to Explain AI Processes: CrossVis is a visual analytics tool that integrates statistical 
analytics and an extended version of parallel coordinates to allow flexible exploratory of large and heterogenous 
multivariate data.  CrossVis is available at https://github.com/ORNL/CrossVis. (Image Credit: Chad Steed)

Work was performed at Oak Ridge National Laboratory

CrossVis selection of SEM images classified as MODIFIED reveals the significance of pore 
features.

Two SEM images with high variance (outliers)
are visually analyzed for multivariate correlations.

PI: Chad A. Steed (ORNL)

Visualization of  Antarctica LAND Ice
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Scientific Achievement

Used time series data, ParaView, and 
streamlines to show how grounded ice 
flows and thins on the Antarctic continent 
in response to ice sheet loss in support of  
the ProSPect SciDAC.

Significance and Impact

Visualization of  key ideas in the science of  
land ice is key for science understanding 
within the climate research communities in 
addition to supporting communication 
climate science to the general public.  

While graphs, such as barcharts, … are 
useful to show the quantitative 
implications, they do not show the impact 
as clearly as visualizations.

Research Details

• Collaborating with the PROSPECT SciDAC to visualize Ice sheet evolution in 
Antarctica

• Leveraged and improved ParaView, one of  the Office of  Science tools, for this work

• Improved our ability to support the ProSPect SciDAC with visualizations of  polar 
regions and the ability to represent dynamics of  land ice for exploration by land ice 
scientists. 

Research Details

• Use in situ analysis to look at performance counters instead of  simulation features 

• Allow users to choose which performance counters are more relevant at different 
point in time

• Using python for analysis gives users much more freedom for analysis

• Looking into Mochi for easier access to data

Performance Analysis for Large 
Scale Simulations

Scientific Achievement

Profiling simulation features instead of  function call is a novel way of  looking of  
at simulation performance.

Significance and Impact

Running simulations on 
supercomputers is expensive (energy 
usage, time, money, …) but yet 
essential for better understanding of  
the world around us.

Profiling tools only allow us to see 
performance issue related to code

This model can help HPC personnel, 
software engineers, and scientists 
better understand  simulation 
performance and figure out how to 
improve efficiency or simulations by 
linking performance analysis to 
simulation features

Evolution of  West Antarctic Ice with an 
extreme loss of  any floating ice over a 200 
year period.

HACC  run using 256 MPI ranks on 16 nodes 
with papi counter: Conditional branch 
instructions correctly predicted

PI: Jim Ahrens

https://github.com/ORNL/CrossVis

