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OBJECTIVES

Description of the structure of nuclei as selt-bound
quantum many-body systems using realistic 2- and
3-body forces between protons and neutrons
-y (Pi — Py)°
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e Ground state (gs) and excitation energies
e Radii and electromagnetic moments

NUCLEAR INTERACTION

Chiral Effective Field Theory (xEFT) up to
next-to-next-to-leading order (N“LO)

Two-nucleon force Three-nucleon force
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e Low-energy constants (LECs) for 2-body
potential fitted to VN scattering data [1]

e Two additional LECs for 3-body force
fitted to A = 3 system [2]

Phenomenogical 2-body potential: Daejon16

e Based on chiral EFT potential at N°LO

o Off-shell behavior fitted to 10 energy levels
from A=4to A =16 ]3]

NO-CORE CI

Solve eigenvalue problem for wave function ¥
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by expanding the A-body wave function ¥ in
Slater Determinants of single-particle HO states ¢
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e Truncate on total number of HO excitations,
such that Center-of-Mass motion factorizes

e Calculate physical observables (¥ (|O|¥;)
e Increase basis until observables converge

RESULTS FOR ENERGY LEVELS [4]
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* NLO including 3N forces
o Daejeonl6 (fitted)
e Daejeonl6
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Energies extrapolated to complete basis
(see poster by J.P. Vary using ANN for extrapolation)

xEFT: gs energies within chiral truncation
error estimate (grey bands) through A = 12,
but '°O is significantly overbound [2]

Daejonl6: good agreement for gs energies
through A = 14, but '°O slightly overbound
Excitation energies:

difference of extrapolated energies

Natural parity spectra in agreement with
experiment up to at least A = 12

Unnatural parity states too high with yEFT,
but well-described by Daejon16

Results with LO, NLO, and N“LO potentials using
LO M1 operator, with chiral truncation estimates
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Without yEFT corrections to M1 operator,
nearly converged in chiral expansion
No such corrections up to N“LO for isospin
T=0 states °Li and B, which agree with data
Discrepancy with data for T > 0 states
consistent with estimates of meson-exchange
contributions to M1 operator at N°LO
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CONCLUSIONS

e Good description of more than 70 states,
excluding isobaric analog states
Agreement with data improves noticably
when select many-body input is used
in determining the nuclear interaction
YEFT potential fitted to A = 2 and 3 only
agreement with data decreases for A > 12

Daejon16 fitted to 10 energy levels in p-shell
gives better agreement above A = 12
and for unnatural parity states

WORK IN PROGRESS

Improved, higher-order YEFT interactions
Consistent electroweak operators

Electroweak transitions,
including (neutrinoless) double-$ decay

Heavier nuclei using effective Shell Model

interactions based on NCCI calculations for
A =17 and 18 nuclei

DEPT. OF PHYSICS AND ASTRONOMY, IOWA STATE UNIVERSITY

COMPUTATIONAL CHALLENGES

Eigenvalue problem for
large sparse matrix.
Convergence of energies,
radii, moments, decays,
etc, require dimensions / _
well over 10%°. | NN

Truncation parameter N
max

Basis dimension

ITERATIVE SOLVER [5]

Locally Optimized Block Preconditioned Conju-
gate Gradient (LOBPCG): SpMV acting on block
of vectors, which improves cache performance,
allows for vectorization, and needs significantly
less iterations compared to Lanczos algorithm

e @ SPMV most time-
"] consuming kernel
N _ 1 e Memory bound
—3 1 e Use only half of
s . 1  symmetric matrix
for both SpMV
and SpMV*
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DISTRIBUTED SPMV/SPMM |6}

e Compressed Sparse Row works okay for
SpMYV (left), but inefficient for SpMV* (right)
in hybrid MPI/OpenMP applications

e Compressed Sparse Block improves data
locality, and allows for efficient OpenMP

parallelization of both SpMV and SpMV*
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