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Introduction
Adaptive Aggregation based multi-grid (MG) methods [1,2,3] are 
becoming the standard for solvers in both the propagator 
calculation and recently even in the gauge generation parts of 
Lattice QCD calculations with Wilson Clover Fermions. The 
system solved is A x = b, where A is the Dirac operator 
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MG aims to reduce the short wavelength (UV) modes on a fine 
grid using a Smoother (S). The error due to the longer 
wavelength modes is solved on a coarser grid by solving with a 
coarsened operator (A-1c). A typical cycle is the V-cycle:
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The error is reduced as (e.g. [2]):

Near Null Space Block Aggregation
Low modes of the A are `self similar’ on cubic-blocks of the 
lattice due to local coherence (weak approximation). Hence one 
way to define R is to aggregate the fine degrees of freedom over 
cubic blocks with near null-space vectors produced in a setup 
phase

S

Fine Grid d.o.f : Vf x Nspin x Ncolor Coarse Grid d.o.f : Vc x Nchiral x Nnull

Restriction: Aggregation over 
sites, colors, chiral spin 
components.

The resulting Coarse operator is a nearest-neighbor operator 
similar in structure to the fine operator:

Where X0(x) and Xµ(x) are matrices of dimension NnullxNchiral.

Ac(x) = X0(x) +
X

µ=1..8

Xµ(x) �x,x+µ̂

SIMD for matrix-vector operation
Applying Ac consists of 9 matrix vector multiplications. We 
restrict to Nnull being a multiple of 8 and vectorize using AVX512 
intrinsics:

Nested Parallelism for Aggregation
Aggregations for restriction 
and prolongation permit 
nested parallelism through 
a) parallelism over blocks 
and b ) w i th in b locks . 
Parallelism within blocks 
may be desirable if there 
are very few coarse sites 
(e.g. a coarse level with 16 
sites, on a KNL system)
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Utilizing threading within the site was only really beneficial when there was not 
enough parallelism via sites (V=44 and V=43x8 cases). In this instance benefit was 
visible when manual (man) implementation of nested parallelism was employed, 
rather than through explicit OpenMP nested (exp) parallelism. In these (man) cases 
serial reductions (ser. red.) in the blocks proved more efficient than parallel ones. [4]

Our implementation delivers a roughly 8x improvement 
over our best previous solver for KNL and Skylake 
systems. Coincidentally, 64 nodes of Stampede 
performs similarly to 64 nodes of Titan in 2016 using 
QUDA-MG. This work opens Cori and Theta for 
propagator calculations and for gauge generation 
using multi-grid in the future. It also serves as a basis 
for performance portability explorations.

Performance results and strong scaling on Stampede 2 using Skylake (SKX) nodes 
Multigrid provides approximately an 8x reduction in solve time than the fastest 
available, mxsed precision BiCGStab solver from the QPhiX library. Similar 
performance improvements are also visible on KNL systems, e.g. Cori and Theta 

Other optimizations 
Our MGProto implementation uses the QPhiX library 
for threading and vectorization on the fine grid. In 
addition we have implemented Schur Decomposition 
based even-odd preconditioning In all the solvers 
used on all MG levels. 
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