
MG Proto: A Multigrid Solver for x86 multicore Systems
Balint Joo (Jefferson Lab), Thorsten Kurth (NERSC)

Introduction
Adaptive Aggregation based multi-grid (MG) methods [1,2,3] are
becoming the standard for solvers in both the propagator
calculation and recently even in the gauge generation parts of
Lattice QCD calculations with Wilson Clover Fermions. The
system solved is A x = b, where A is the Dirac operator

Multi-Grid Solvers
V-Cycle & K-Cycle

Coarse Operator

Acknowledgement
This work is supported by the US Department Of Energy, Office of Science, Offices of
Nuclear Physics and Advanced Scientific Computing Research, through the SciDAC
program under contract DE-AC05-06OR23177 under which JSA LLC operates and
manages Jefferson Lab, and under the 17-SC-20-SC Exascale Computing Project.

Conclusions & Outlook

Performance Results

e0 (I � SA)k(1� PA�1
c RA)(1� SA)je0

MG aims to reduce the short wavelength (UV) modes on a fine
grid using a Smoother (S). The error due to the longer
wavelength modes is solved on a coarser grid by solving with a
coarsened operator (A-1c). A typical cycle is the V-cycle:

S

Ac-1

j-iterations of
Pre-smoothing

k-iterations of
post-smoothing

Restriction RProlongation P

Bottom Solve (recursive)

The error is reduced as (e.g. [2]):

Near Null Space Block Aggregation
Low modes of the A are `self similar’ on cubic-blocks of the
lattice due to local coherence (weak approximation). Hence one
way to define R is to aggregate the fine degrees of freedom over
cubic blocks with near null-space vectors produced in a setup
phase

S

Fine Grid d.o.f : Vf x Nspin x Ncolor Coarse Grid d.o.f : Vc x Nchiral x Nnull

Restriction: Aggregation over
sites, colors, chiral spin
components.

The resulting Coarse operator is a nearest-neighbor operator
similar in structure to the fine operator:

Where X0(x) and Xµ(x) are matrices of dimension NnullxNchiral.

Ac(x) = X0(x) +
X

µ=1..8

Xµ(x) �x,x+µ̂

SIMD for matrix-vector operation
Applying Ac consists of 9 matrix vector multiplications. We
restrict to Nnull being a multiple of 8 and vectorize using AVX512
intrinsics:

Nested Parallelism for Aggregation
Aggregations for restriction
and prolongation permit
nested parallelism through
a) parallelism over blocks
and b) w i th in b locks .
Parallelism within blocks
may be desirable if there
are very few coarse sites
(e.g. a coarse level with 16
sites, on a KNL system)

2 4 6 8 10 12 14 16
#inner threads

0
25
50
75

100
125
150
175

GF
LO

P/
s

V=4x4x4x4, 24, man. ser. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

50

100

150

200

250

GF
LO

P/
s

V=4x4x4x8, 24, man. ser. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
50

100
150
200
250
300
350
400

GF
LO

P/
s

V=4x4x8x8, 24, man. ser. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

100

200

300

400

GF
LO

P/
s

V=4x8x8x8, 24, man. ser. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
25
50
75

100
125
150
175

GF
LO

P/
s

V=4x4x4x4, 24, man. par. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

50

100

150

200

250

GF
LO

P/
s

V=4x4x4x8, 24, man. par. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
50

100
150
200
250
300
350
400

GF
LO

P/
s

V=4x4x8x8, 24, man. par. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

100

200

300

400

GF
LO

P/
s

V=4x8x8x8, 24, man. par. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
25
50
75

100
125
150
175

GF
LO

P/
s

V=4x4x4x4, 24, exp. cust. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

50

100

150

200

250

GF
LO

P/
s

V=4x4x4x8, 24, exp. cust. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
50

100
150
200
250
300
350
400

GF
LO

P/
s

V=4x4x8x8, 24, exp. cust. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

100

200

300

400

GF
LO

P/
s

V=4x8x8x8, 24, exp. cust. red.
16 threads
32 threads
64 threads
128 threads
256 threads

Utilizing threading within the site was only really beneficial when there was not
enough parallelism via sites (V=44 and V=43x8 cases). In this instance benefit was
visible when manual (man) implementation of nested parallelism was employed,
rather than through explicit OpenMP nested (exp) parallelism. In these (man) cases
serial reductions (ser. red.) in the blocks proved more efficient than parallel ones. [4]

Our implementation delivers a roughly 8x improvement
over our best previous solver for KNL and Skylake
systems. Coincidentally, 64 nodes of Stampede
performs similarly to 64 nodes of Titan in 2016 using
QUDA-MG. This work opens Cori and Theta for
propagator calculations and for gauge generation
using multi-grid in the future. It also serves as a basis
for performance portability explorations.

Performance results and strong scaling on Stampede 2 using Skylake (SKX) nodes
Multigrid provides approximately an 8x reduction in solve time than the fastest
available, mxsed precision BiCGStab solver from the QPhiX library. Similar
performance improvements are also visible on KNL systems, e.g. Cori and Theta

Other optimizations
Our MGProto implementation uses the QPhiX library
for threading and vectorization on the fine grid. In
addition we have implemented Schur Decomposition
based even-odd preconditioning In all the solvers
used on all MG levels.

References

