
Introduction

Accelerating quantum Monte Carlo simulations using neural
networks: applications to the Holstein model and beyond
Shaozhi Li1, Philip M. Dee1, Ehsan Katami2, and Steven Johnston1
1Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
2Department of Physics and Astronomy, San José State University, San José, California 95192, USA

Determinant QMC & Holstein Model Charge-Density-Wave Transition

Monte Carlo (MC) simulations are essential computational method with widespread use throughout all areas of science and engineering. We present a method for accelerating lattice MC simulations using artificial neural
networks that are trained to perform local and global moves in configuration space. Our networks take local spacetime MC configurations as input features and can, therefore, be trained using samples generated by
conventional MC runs on smaller lattices before being utilized for simulations of larger systems. This new approach is benchmarked for the case of determinant quantum Monte Carlo (DQMC) studies of the two-dimensional
Holstein model. We find that the artificial neural networks are capable of learning an unspecified effective model that accurately and efficiently reproduces the MC configuration weights of the Holstein model and achieve an
order of magnitude speedup over the conventional DQMC algorithm. Our approach is broadly applicable to many classical and quantum lattice MC algorithms.

Abstract

References & Acknowledgements

Conclusions

1) P. M. Dee et al., Phys. Rev. B 99, 024514 (2019).
2) M. Hohendler and T. C. Lang, Computational Many-Particle

Physics (2008).
3) I. Esterlis et al., Phys. Rev. B 97, 140501(R) (2018).
4) S. Li et al., arXiv:1905.07440 (2019); In press at Phys. Rev. B.
5) J. Liu et al., Phys. Rev. B 95, 041101 (2017).
6) C. Chen et al., Phys. Rev. B 98, 041102 (2018).

DQMC simulations of the Holstein model calculate the partition
function, expressed as a multi-dimensional integral over phonon
fields

Artificial Neural Networks

H = �t

X

hi,ji,�

c
†
i,�cj,� � µ

X

i�

c
†
i,�ci,�

+ ⌦
X

i

✓
b
†
i bi +

1

2

◆
+ g

X

i,�

c
†
i,�ci,�

⇣
b
†
i + bi

⌘

Monte Carlo (MC) methods are integral in science and engineering
fields. For example, quantum Monte Carlo (QMC) simulations have
provide critical and unbiased insights into the Hubbard and Holstein
Hamiltonians and beyond.

MC simulations face critical challenges:
1. Computationally expensive “moves” in configuration space.
2. Limitations to small clusters & finites size effects.
3. Long autocorrelation times (e.g. near phase transitions).
4. The infamous Fermion sign problem.

This work was supported by the Scientific Discovery through
Advanced Computing (SciDAC) program funded by the U.S.
Department of Energy, Office of Science, Advanced Scientific
Computing Research and Basic Energy Sciences, Division of
Materials Sciences and Engineering. E. K. is supported by the
National Science Foundation Grant No. DMR-1609560. An award of
computer time was provided by the INCITE program. This research
also used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725.

The Holstein Model

Can we teach the computer to overcome one or
more of these limitations?

The Holstein is the simplest model describing itinerant electrons
interacting with lattice vibrations:

Diagrammatic perturbation theory:
Competing insulating charge-density-wave and superconducting
phases (left) and significant finite size effects (right) [1].

Quantum Monte Carlo Simulations:
Limited by long autocorrelation times that restrict simulations to small
cluster sizes [2,3]

12x12 lattice
I. Esterlis et al., Ref. [3].

6x6 , 10x10 lattice
P. M. Dee et al., unpublished.

where the weights are related to matrix determinants

Z = Tr
�
e��H

�
=

Z
W ({X}) dDX ,

The displacements are Monte Carlo integrated using the Metropolis-
Hastings algorithm, where updates are accepted with probability

p =
W ({X 0})
W ({X}) /

det(M 0
")det(M

0
#)

det(M")det(M#) .

Xi,l

i i+ 1i� 1

l

l + 1

l � 1

space i

ti
m
e
l

Xi,: ! Xi,: +�X:

O
�
N4L

�
Complexity:

Xi,l

i i+ 1i� 1

l

l + 1

l � 1

space i

ti
m
e
l

Xi,l ! Xi,l +�Xi,l

O
�
N3L

�
Complexity:

Local Global

Performing updates requires expensive determinant calculations.

A bosonic effective model

The matrix determinants are due to the electron degrees of freedom.
To circumvent them, we define an effective bosonic model Eeff that
depends only on the lattice degrees of freedom

.W ({X}) = e�Sph�⌧det (M") det (M#)

The self-learning Monte Carlo [5, 6] methods specify Eeff at the
onset. Instead, we designed artificial neural networks to learn the
effective model from training examples.

The effective model is used propose many updates that are
accepted with cumulative probability given by

W ({X}) = e�Sph�⌧det (M") det (M#) ⌘ e��Eeff ({X}).

0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

0.4

0.6

0.8

1

1.2

1.4

N = 8 8
N = 10 10
N = 12 12
N = 14 14
N = 16 16

-1 0 1

0.4
0.6
0.8

1
1.2
1.4

Networks trained
on a 6x6 cluster
generalize to
larger systems
and can be used
to perform a
scaling analysis.

Performance

Fully connected network for local updates

Convolutional neural network for global updates

10
1

10
2

10
0

10
1

10
2

10
3

10
4

4 6 8 10 12 14
0

0.25

0.5

0.75

1

1.25

4 6 8 10 12 14
0

20

40

60

80

100

DQMC
NNMC
SLDQMC

4 6 8 10 12 14
0

1

2

3

0 2 4 6 8 10
0

100

200

0.5

1

1.5

pc =
W ({X 0})
W ({X})

e��(Eeff ({X})

e��(Eeff ({X0}) .

⌦ = 0.5t

� = 0.5

Tc = 0.244/t

• We designed artificial neural networks capable of accurately and
effectively predicting DQMC moves for the Holstein model.

• The networks use local field configurations and can be easily
trained using small systems.

• Accelerated the algorithm by an order of magnitude, allowing for
scaling analysis of the CDW transition.

• The method is generalizable across the phase diagram, and can
be used to accelerate other types of lattice Monte Carlo
simulations.

16 20 24 28 32
16
20
24
28
32

Xi,l

�Xi,l

y (xi,l)

x̂
ŷ

⌧

...

Input Layer
(29 Neurons)

Hidden
Layer 1

(15 Neurons)

Hidden
Layer 2

(1 Neuron)

Output
Layer

fully
connected

8 16 24 32 40
8
16
24
32
40

...

y ({X})

z ({X})

�Xi

⌧
d

Xi,1

Xi,L

Xi,2

convolution

Hidden
Layer 1

(Variable #
Neurons)

Hidden
Layer 2

(10 Neuron)

X̄nn
i,1 X̄

nnn
i,1

X̄nnn
i,LX̄nn

i,L

...

Input Layer
(3L + 3 Neurons)

...
Output
Layer

fully
connected

Two types of Monte Carlo moves are required:

