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Determinant QMC & Holstein Model Charge-Density-Wave Transition

Monte Carlo (MC) simulations are essential computational method with widespread use throughout all areas of science and engineering. We present a method for accelerating lattice MC simulations using artificial neural 
networks that are trained to perform local and global moves in configuration space. Our networks take local spacetime MC configurations as input features and can, therefore, be trained using samples generated by 
conventional MC runs on smaller lattices before being utilized for simulations of larger systems. This new approach is benchmarked for the case of determinant quantum Monte Carlo (DQMC) studies of the two-dimensional 
Holstein model. We find that the artificial neural networks are capable of learning an unspecified effective model that accurately and efficiently reproduces the MC configuration weights of the Holstein model and achieve an 
order of magnitude speedup over the conventional DQMC algorithm. Our approach is broadly applicable to many classical and quantum lattice MC algorithms. 
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DQMC simulations of the Holstein model calculate the partition 
function, expressed as a multi-dimensional integral over phonon 
fields

Artificial Neural  Networks
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Monte Carlo (MC) methods are integral in science and engineering 
fields. For example, quantum Monte Carlo (QMC) simulations have 
provide critical and unbiased insights into the Hubbard and Holstein 
Hamiltonians and beyond.

MC simulations face critical challenges:
1. Computationally expensive “moves” in configuration space.
2. Limitations to small clusters & finites size effects.
3. Long autocorrelation times (e.g. near phase transitions).
4. The infamous Fermion sign problem.
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The Holstein Model

Can we teach the computer to overcome one or 
more of these limitations? 

The Holstein is the simplest model describing itinerant electrons 
interacting with lattice vibrations:

Diagrammatic perturbation theory:
Competing insulating charge-density-wave and superconducting 
phases (left) and significant finite size effects (right) [1]. 

Quantum Monte Carlo Simulations:
Limited by long autocorrelation times that restrict simulations to small 
cluster sizes [2,3]

12x12 lattice
I. Esterlis et al., Ref. [3].

6x6 , 10x10 lattice
P. M. Dee et al., unpublished.

where the weights are related to matrix determinants
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The displacements are Monte Carlo integrated using the Metropolis-
Hastings algorithm, where updates are accepted with probability
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Performing updates requires expensive determinant calculations.

A bosonic effective model

The matrix determinants are due to the electron degrees of freedom. 
To circumvent them, we define an effective bosonic model Eeff that 
depends only on the lattice degrees of freedom

.W ({X}) = e�Sph�⌧det (M") det (M#)

The self-learning Monte Carlo [5, 6] methods specify Eeff at the 
onset. Instead, we designed artificial neural networks to learn the 
effective model from training examples. 

The effective model is used propose many updates that are 
accepted with cumulative probability given by  

W ({X}) = e�Sph�⌧det (M") det (M#) ⌘ e��Eeff ({X}).
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Networks trained 
on a 6x6 cluster 
generalize to 
larger systems 
and can be used 
to perform a 
scaling analysis. 

Performance

Fully connected network for local updates

Convolutional neural network for global updates
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• We designed artificial neural networks capable of accurately and 
effectively predicting DQMC moves for the Holstein model.

• The networks use local field configurations and can be easily 
trained using small systems. 

• Accelerated the algorithm by an order of magnitude, allowing for 
scaling analysis of the CDW transition. 

• The method is generalizable across the phase diagram, and can 
be used to accelerate other types of lattice Monte Carlo 
simulations. 
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ŷ

⌧

...

Input Layer
(29 Neurons)

Hidden 
Layer 1

(15 Neurons)

Hidden 
Layer 2

(1 Neuron)

Output 
Layer

fully
connected

8 16 24 32 40
8
16
24
32
40

...

y ({X})

z ({X})

�Xi

⌧
d

Xi,1

Xi,L

Xi,2

convolution

Hidden 
Layer 1

(Variable # 
Neurons)

Hidden 
Layer 2

(10 Neuron)

X̄nn
i,1 X̄

nnn
i,1

X̄nnn
i,LX̄nn

i,L

...

Input Layer
(3L + 3 Neurons)

...
Output 
Layer

fully
connected

Two types of Monte Carlo moves are required:


