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Abstract	

Conclusions	and	Future	Direc3ons	

Coupled-cluster	 theory	 is	 one	 of	 the	 most	 accurate	 and	
reliable	 black-box	 electronic	 structure	 methods	 for	 the	
predic>on	of	molecular	proper>es.	The	primary	 limita>on	of	
this	method	is	its	enormous	computa>onal	cost;	the	coupled-
cluster	 singles	 and	 doubles	 (CCSD)	 method	 scales	 with	 the	
sixth-power	 of	 system	 size,	 O(N6),	 and	 the	 storage	
requirements	 for	 the	wavefunc>on	 grow	 as	O(N4).	 Here,	we	
present	 approximate	 formula>ons	 of	 CC	 methods	 based	 on	
compression	 of	 the	 wavefunc>on	 coefficients	 and	 tensor	
hypercontrac>on	 (THC)	 approxima>ons	 to	 the	 electron	
repulsion	integrals	and	amplitudes.	

Coupled-Cluster	Theory	

Mo3va3on	

Typically,	 the	 CC	 energy	 and	 t-amplitudes	 are	 defined	 by	 a	
projec>ve	series	of	nonlinear	equa>ons.	

h�0|e�T̂ ĤeT̂ |�0i = ECC
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Coupled-cluster	 (CC)	 theory	 is	 defined	 by	 its	 exponen>al	
ansatz	for	the	wavefunc>on	and	the	resul>ng	CC	Schrödinger	
equa>on.	

| CCi = eT̂ |�0i

In	EOM-CC,	excited	states	are	obtained	by	introducing	a	linear	
excita>on	 operator	 and	 solving	 for	 the	 eigenstates	 of	 the	
similarity	transformed	Hamiltonian.		
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e�T̂ ĤeT̂ R̂n|�0i = EEOM-CCR̂n|�0i

The	CCSD	and	EOM-CCSD	methods	are	defined	by	trunca>ng	
the						and						operators	at	the	level	of	singles	and	doubles.	T̂ R̂

Rank-Reduced	Coupled-Cluster	

Fig.	1	The	absolute	value	of	the	eigenvalues	of	the	t-amplitudes	
(led)	 of	 CCSD	 and	 r-amplitudes	 (right)	 is	 ploeed	 against	 the	
rela>ve	 index	 of	 the	 eigenvalue:	 the	most	 posi>ve	 eigenvalue	
has	an	index	of	0	and	the	most	nega>ve	eigenvalue	has	an	index	
of	 1.	 Computa>ons	 were	 performed	 for	 a	 series	 of	 linear	
alkenes	using	a	cc-pVDZ	basis	set.	

Mo>vated	by	the	rank	sparsity	of	the	doubles	amplitudes	in	CC	
(seen	 in	 Fig.	 1),	 we	 assert	 a	 low-rank	 decomposi>on	 of	 the	
doubles	 amplitudes	 and	 develop	 a	 reformula>on	 of	 the	 CC	
theory	 to	 operate	 directly	 in	 terms	 of	 these	 compressed	
quan>>es.	

tabij =
X

PQ

UP
iaT

PQUQ
jb rabij =

X

PQ

UP
iaR

PQUQ
jb

To	 that	 end,	 we	 introduce	 the	 linear	 de-excita>on	 operators	
that	 appear	 in	 the	 Λ–equa>ons	 commonly	 used	 to	 define	 CC	
gradients	and	proper>es	and	treat	the	λ-amplitudes	as	low-rank	
quan>>es.	
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We	 now	 may	 define	 the	 RR-CC	 wavefunc>on	 from	 the	
perspec>ve	of	the	CC	energy	func>onal.	

ECC = h�0|(1 + ⇤̂)e�T̂ ĤeT̂ |�0i

@

@⇤PQ
h�0|(1 + ⇤̂)e�T̂ ĤeT̂ |�0i = 0

The	 RR-CC	 doubles	 amplitude	 equa>ons	 are	 generated	 by	
sekng	 the	 par>al	 deriva>ve	 of	 the	 CC	 energy	 func>onal	 with	
respect	to												to	zero.	⇤PQ

General iza>on	 of	 this	 procedure	 to	 EOM-CCSD	 is	
straighlorward.	 The	 ques>on	 that	 remains	 is	 how	 to	 best	
choose	the								quan>>es.	We	consider	the	eigendecomposi>on	
of	 more	 approximate	 doubles	 amplitudes	 such	 as	 those	
obtained	from	MP2	or	MP3.	
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Results:	Rank-Reduced	EOM-CCSD	

Fig.	 2	 Accuracy	 of	 RR-CCSD	 for	 the	 torsional	 poten>al	 of	
bipyridine	using	various	projectors	in	a	cc-pVDZ	basis	(led).	RR-
CCSD	using	an	MP3	projector	with	an	eigenvalue	cutoff	of	10-3.	
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Fig.	3	Torsional	poten>al	of	the	
S1	and	S2	electronic	states	of	4-
(dimethylamino)benzonitrile	
(DMABN)	 computed	 at	 the	
EOM-CCSD/cc-pVDZ	 level	 of	
theory.	 RR-EOM-CCSD/cc-pVDZ	
energies	 are	 computed	 using	
decreasing	 cutoffs	 (ε)	 in	 the	
construc>on	 of	 the	 amplitude	
projector.	The	top	panel	shows	
the	energy	(in	eV)	rela>ve	to	S0	
with	 a	 torsional	 angle	 of	 0°.	
The	 lower	 panel	 shows	 the	
error	 (in	 eV)	 of	 RR-EOM-CCSD	
rela>ve	to	EOM-CCSD.	

Projectors	 for	 RR-EOM-CCSD	must	 be	 state	 specific.	 Here,	 we	
use	a	form	of	the	doubles	amplitudes	reminiscent	of	CIS(D).	

rabij = h�ab
ij |[Ĥ, R̂1]|�0i/(✏a + ✏b � ✏i � ✏j � !)

Results:	Rank-Reduced	CCSD	

Fig.	 6	 Timings	 of	 a	 fully	
factorized	 implementa>on	 of	
rank- reduced	 l inear i zed	
coupled-cluster	 doubles	 (RR-
LCCD)	 for	 a	 series	 of	 water	
clusters	in	a	cc-pVDZ	basis	set.	
Note	 that	 the	 method	 shows	
lower	than	O(N5)	scaling.	

We	 have	 demonstrated	 that	 our	 rank-reduced	 reformula>on	 of	
CCSD	 and	 EOM-CCSD	 allows	 chemical	 accuracy	 in	 the	 correla>on	
energy	 and	 excita>on	 energy	 to	 be	 achieved	 with	 a	 compressed	
representa>on	of	the	wavefunc>on.	What	remains	is	to	fully	realize	
the	 poten>al	 improvements	 in	 efficiency	 that	 result	 from	
combining	 these	 ideas	 with	 tensor	 hypercontrac>on	 (THC)	
representa>ons	 of	 the	 electron	 repulsion	 integrals	 and	 low-rank	
projectors.	 The	 compressed	 representa>on	 of	 wavefunc>ons	 and	
operators	makes	these	approaches	amenable	to	high	performance	
distributed	memory	implementa>ons.	Tensor	HyperContrac3on	

The	ubiquitous	electron	repulsion	 integral	tensor	emits	a	 low-
rank	 factoriza>on	 that	 can	 be	 exploited	 in	 many	 contexts	 in	
electronic	structure	theory.	The	density	fikng	approxima>on,	
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Is	 a	 common	 strategies	 for	 building	 such	 a	 low-rank	
representa>on.	 However,	 these	 approaches	 leave	 the	 indices	
in	the	bra	and	ket	“pinned,”	which	limits	the	available	algebraic	
flexibility.	The	Tensor	HyperContrac>on	factoriza>on,	however,	
exposes	 all	 available	 flexibility	 and	 represents	 the	 ideal	
factoriza>on	of	such	a	fourth-order	tensor.	
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Factorized	Triples	Correc3ons	with	THC	
Fig.	 4	 Timing	 of	 the	
C C S D ( T ) / c c - p V D Z	
pe r tu rba>ve	 t r i p l e s	
correc>on	 with	 and	
without	 the	 applica>on	
of	THC	approxima>ons	to	
c l u s t e r s 	 o f 	 w a t e r	
molecules.	 Crossover	 is	
es>mated	 for	 systems	
with	 containing	 more	
than	13	water	molecules.	

Fig.	 5	 Timing	 of	 one	
itera>on	 of	 CC3/cc-pVDZ	
with	 and	 without	 the	
a p p l i c a >on	 o f	 THC	
approxima>ons.	 Timings	
f o r 	 C C 3 	 u s e 	 t h e	
implementa>on	 in	 the	
PSI4	package.	


