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Green’s function coupling to an electron reservoir

Implicit electrolyte solvation model

Electrocatalysis

Hierarchy of approximations Verification of implementation

Coupling model Proof-of-principle implementation Determination of parameters

Combining both approaches

r[✏(r)r�tot(r)] = �4⇡[⇢sol(r) + ⇢ions(r)]

with the electrolyte ion charge density for a 1:1 electrolyte

Total electrostatic free energy

Free energy of solvation

Solver implementation:
• Extended Multigrid-Poisson solver in Q-Chem [2]
• Strong damping on the ion charge density update for stable 

convergence

qi�tot(r) << kBT vs. qi�tot(r) ⇡ kBT

For low ionic concentrations the Boltzmann factor can be 
approximated as a linear function of the electrostatic potential:

1.

exp

✓
�qi�tot(r)

kBT

◆
⇡ 1� qi�tot(r)

kBT

2.

Point-like ions accumulate unphysically close to the solute surface
Include a finite ion size by restricting the maximum local concentration
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3. Stern-layer thickness

• Offset between dielectric region and 
ion accessible region to account for 
Stern layer [3]

• Modeled with error functions
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a = Stern-layer thickness
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Dielectric function and ion exclusion 
function for a spherical solule.

2D-cut of the dielectric function and ion exclusion 
function for 4-Nitroaniline.

2D-cut of the polarization charge density (the dielectric 
response) and the electrolyte ion charge density.

• Free energy of solvation changes linearly with electrolyte concentration 
over a wide range of concentrations (Sechenov coefficients)[4]

Extended molecule model of adsorbate on a nanocluster

electrode atom without coupling

electrode atom with coupling to 
electron reservoir

⌃jj = 0

⌃jj = ✏+ i⌘

Update the density matrix by integrating the retarded Green’s function

• The total number of electrons in the system can be controlled by the 
upper integration limit

• Coupling realized in minimal atomic orbital basis and later projected to 
final basis

• Formalism similar to molecular junctions without second reservoir [1]

✏: energy shift
⌘: level broadening

Flowchart of the SCF procedure

• Convergence acceleration with density DIIS

• Analytical integration to obtain density matrix

Quasi-infinite 1D model system: hydrogen rings
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(from calculation without coupling)
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update Hamiltonian matrix of 
extended molecule

update retarded Green’s function

update density matrix 
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minimal basis
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Benefits

kexps = �0.005Lmol�1
keops = 0.143Lmol�1
ks = 0.091Lmol�1

Ion effect on the free energy of solvation for 
the polar cytosine molecule obtained from 
the standard (PB) and size-modified (MPB) 
free energy expressions.

• Excellent agreement for nonpolar 
molecules

• Less satisfying agreement for polar 
molecules

• Deviation from linear behavior with and
without size-modification
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Combining the Poisson–Boltzmann implicit solvation model with the Green’s 
function embedding model allows to study electroctalytic reactions on 
nanoclusters under applied bias.

• Study catalytic reactions at surface structures that are not easily accessible
for DFT programs with periodic boundary conditions such as 
undercoordinated sites [5]

• Applied bias can be naturally included with only one parameter
• Green’s function embedding model can by systematically improved (e.g. 

tight-binding model for the coupling parameters [6])
• Poisson–Boltzmann implementation allows us to systematically analyze ion 

size effects

• Parameters can be tuned such that the fragments adapt certain 
properties of the full system

Tune parameters of the coupling model to mimick properties 
of the full nanocluster

Simulate the full system with just a few monomers

Variables

• number of atoms
• distance r1

• distance r2

n = 2

n = 3

n = 4

n = 5r1 r2

n 2 3 4 5
[a.u.] 0.05093 0.04965 0.04896 0.04871

[EH] -0.24556 -0.18316 -0.14895 -0.12831µ� (✏HOMO � ✏LUMO)

⌘

[1] A. Arnold, F. Weigend, F. Evers, J. Chem. Phys.
126, 174101 (2007).

[2] M. Coons, J. M. Herbert, J. Chem. Phys., 148,
222834 (2018).

[3] S. Ringe, H. Oberhofer, K. Reuter, J. Chem.
Phys., 146, 134103 (2017).

[4] I. Sechenov, Ann. Chim. Phys. 25, 226 (1892).

[5] Y. Li, F. Cui, M. B. Ross, D. Kim, Y. Sun, P.
Yang, Nano Lett., 17, 1312, (2017).

[6] Y. Xue, S. Datta, M. A. Ratner, Chem. Phys.,
281, 151 (2002). 

--

GR

Optimized parameters to match the energy per fragment of a hydrogen ring with 40 atoms and r1 = r2 = 0.74 Å
under the constraint of uncharged fragments.
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