Toward electrocatalysis on metal clusters coupled to an electron reservoir Christopher J. Stein and Martin Head-Gordon

Chemical Sciences Division, Lawrence Berkeley National Laboratory, and, Department of Chemistry, University of California Berkeley

Green's function coupling to an electron reservoir

Coupling model

Extended molecule model of adsorbate on a nanocluster

electrode	atom	without	coupling
			· · ·

\sum_{i}	jj	—	0		

	initial quess for density matrix P
set up Σ in	(from calculation without coupling)

Proof-of-principle implementation

Flowchart of the SCF procedure

Determination of parameters

Quasi-infinite 1D model system: h	ydrogen rings	5
Simulate the full system	\longrightarrow	with just a few monomers
Variables		

electrode atom with coupling to electron reservoir

 $\Sigma_{jj} = \epsilon + i\eta$ ϵ : energy shift η : level broadening

Update the density matrix by integrating the retarded Green's function $\mathbf{G}_{\mathrm{R}}(E) = (E\mathbf{I} - \mathbf{H}_{\mathrm{em}}(\mathbf{P}) - \mathbf{\Sigma})^{-1}$

$$\mathbf{P} = \frac{1}{\pi} \int_{-\infty}^{\mu} \Im \mathbf{G}_{\mathbf{R}}(E) \mathrm{d}E$$

- The total number of electrons in the system can be controlled by the upper integration limit μ
- Coupling realized in minimal atomic orbital basis and later projected to final basis
- Formalism similar to molecular junctions without second reservoir [1]

- Convergence acceleration with **density DIIS**
- Analytical integration to obtain density matrix

Optimized parameters to match the energy per fragment of a hydrogen ring with 40 atoms and $r_1 = r_2 = 0.74$ Å under the constraint of uncharged fragments.

n	2	3	4	5
η [a.u.]	0.05093	0.04965	0.04896	0.04871
$\mu - (\epsilon_{\rm HOMO} - \epsilon_{\rm LUMO}) [E_{\rm H}]$	-0.24556	-0.18316	-0.14895	-0.12831

- Parameters can be tuned such that the fragments adapt certain properties of the full system
 - → Tune parameters of the coupling model to mimick properties of the full nanocluster

Implicit electrolyte solvation model

Formalism

Poisson–Boltzmann equation

 $\nabla[\epsilon(\mathbf{r})\nabla\phi_{\text{tot}}(\mathbf{r})] = -4\pi[\rho_{\text{sol}}(\mathbf{r}) + \rho_{\text{ions}}(\mathbf{r})]$

Hierarchy of approximations

1. $q_i \phi_{\text{tot}}(\mathbf{r}) \ll k_{\text{B}}T$ vs. $q_i \phi_{\text{tot}}(\mathbf{r}) \approx k_{\text{B}}T$

For low ionic concentrations the Boltzmann factor can be approximated as a **linear** function of the electrostatic potential:

Verification of implementation

with the electrolyte ion charge density for a 1:1 electrolyte

$$\rho_{\rm PB}^{\rm ions}(\mathbf{r}) = -2ec^b \sinh\left(\frac{e\phi_{\rm tot}(\mathbf{r})}{k_{\rm B}T}\right)$$

Total electrostatic free energy

$$G_{\rm PB}^{\rm es} = \int \left(\frac{1}{2}\rho_{\rm sol}(\mathbf{r})\phi_{\rm tot}(\mathbf{r}) - \frac{1}{2}\rho_{\rm ions}(\mathbf{r})\phi_{\rm tot}(\mathbf{r}) - \Delta\Pi_{\rm PB}\right) \mathrm{d}\mathbf{r}$$

Free energy of solvation

$$\Delta G_{\rm PB}^{\rm solv} = \frac{1}{2} \int \rho_{\rm sol}(\mathbf{r}) (\phi_{\rm tot}(\mathbf{r}) - \phi_{\rm sol}(\mathbf{r})) d\mathbf{r} - \frac{1}{2} \int \rho_{\rm ions}(\mathbf{r}) \phi_{\rm tot}(\mathbf{r}) d\mathbf{r} + 2c^b k_{\rm B} T \int \left(1 - \cosh\left(\frac{e\phi_{\rm tot}(\mathbf{r})}{k_{\rm B} T}\right) \right) d\mathbf{r}$$

Solver implementation:

- Extended Multigrid-Poisson solver in Q-Chem [2]
- Strong damping on the ion charge density update for stable convergence

2. • • vs. • •

Point-like ions accumulate unphysically close to the solute surface

 \rightarrow Include a **finite ion size** by restricting the maximum local concentration

3. Stern-layer thickness

- Offset between dielectric region and ion accessible region to account for Stern layer [3]
- Modeled with error functions

$$\lambda(\mathbf{r}) = \prod_{\alpha}^{\text{atoms}} \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{|\mathbf{r} - \mathbf{R}_{\alpha}| - d_{\alpha} - \mathbf{a}}{\Delta}\right) \right]$$

 $\lambda(\mathbf{r}) = \text{ion exclusion function}$ a = Stern-layer thickness

Dielectric function and ion exclusion for a spherical solule.

• Free energy of solvation changes linearly with electrolyte concentration over a wide range of concentrations (Sechenov coefficients)[4]

Ion effect on the free energy of solvation for the polar cytosine molecule obtained from the standard (PB) and size-modified (MPB) free energy expressions.

- Excellent agreement for nonpolar molecules
- Less satisfying agreement for polar molecules
- Deviation from linear behavior with and without size-modification

Electrocatalysis

Combining both approaches

Combining the Poisson–Boltzmann implicit solvation model with the Green's function embedding model allows to **study electroctalytic reactions on nanoclusters under applied bias**.

REFERENCES

[1] A. Arnold, F. Weigend, F. Evers, J. Chem. Phys. *126*, 174101 (**2007**).

- [2] M. Coons, J. M. Herbert, J. Chem. Phys., 148, 222834 (2018).
- [3] S. Ringe, H. Oberhofer, K. Reuter, J. Chem.

Benefits

- Study catalytic reactions at surface structures that are not easily accessible for DFT programs with periodic boundary conditions such as undercoordinated sites [5]
- Applied bias can be naturally included with only one parameter
- Green's function embedding model can by systematically improved (e.g. tight-binding model for the coupling parameters [6])
- Poisson–Boltzmann implementation allows us to systematically analyze ion size effects

Phys., 146, 134103 (2017).

[4] I. Sechenov, Ann. Chim. Phys. 25, 226 (1892).

[5] Y. Li, F. Cui, M. B. Ross, D. Kim, Y. Sun, P. Yang, Nano Lett., *17*, 1312, (2017).

[6] Y. Xue, S. Datta, M. A. Ratner, Chem. Phys., 281, 151 (2002).

This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.

