
Linear Solver Improvements in the ComPASS4 Project
LBNL Solver Team: Pieter Ghysels, Mathias Jacquelin, Esmond Ng

ComPASS4 PI’s: James Amundson, Weiming An, Ann Almgren,
Warren Mori, Esmond Ng and Stefan Wild

Linear Solvers in ComPASS4: Advanced Poisson Solvers for Beam Dynamics

A detailed understanding of the dynamics of lost particles and the subsequent energy deposition in
the material constituting the accelerator and its surroundings is crucial to enabling higher-intensity
accelerators. This requires accurate models of the fields in the vicinity of the boundaries (apertures).
The FFT solvers available in Synergia are fast, but hard to adapt to complex boundaries.
New solvers need to be fast enough to be applied O(105) − O(108) times in a large-scale simulation,
while being optimized for the relatively small number of degrees of freedom necessary to simulate smooth
beam distributions.

I Direct solvers can amortize setup/factorization over many consecutive solves

I Direct sparse solvers are highly efficient on small-to-medium sized problems, and efficiently use
modern hardware through BLAS3/2 calls

I Iterative solvers converge quickly with a good initial guess, from a previous solve

I Krylov type solvers can reuse or recycle basis information to accelerate subsequent solves

SymPACK Triangular Solve Improvements

I Applying Gaussian elimination to a sparse matrix destroys some of the zero entries

I Producing fill entries

I Ordering problem: finding “good” row and column permutations to reduce fill
I Finding the best ordering is NP-complete ⇒ rely on heuristic algorithms:

I Multiple Minimum Degree, Approximate Minimum Degree
I Nested-dissection ((PAR)Metis and (PT)Scotch graph partitioners)

I Larger blocks important for performance (manycore, GPUs)

I Sparse matrix computations suffer low computational intensity
I Heuristic to form larger blocks:

I Heuristic based on TSP [Pichon, Faverge, Ramet, Roman]
I Faster heuristic, preserving quality

Refined ordering in supernodes to improve block structure and data locality

The heuristic

I After symbolic factorization, supernodes are
assigned labels

I Maintain an ordered partition of the vertex set
(initially the supernode set)

I Refine the partition during successive steps:
I Process the adjacency sets adj(S) in reverse order

of labels
I Partition each set S into two sets:

S ′ := S ∩ adj(S) S ′′ := S \ adj(S).

I If S ′ and S ′′ are non-empty, replace S by S ′

and S ′′

I Six variants of the heuristic:
I “Natural” order: supernodes are processed by

decreasing order of label
I Maximal Cardinality Search (MCS) order:

supernodes are processed by decreasing order of
cardinality

I Largest subtree first order: supernodes are processed
by decreasing size of subtrees

I For each processing order, either place S ′ before S ′′,
or alternate

Experimental evaluation

I Set of 58 matrices from Florida Sparse Matrix
Collection

I Experiments using symPACK sparse solver
performed on NERSC Cori

I Refinement when doing multiple solves using
METIS

I Single 68 KNL core node

I Heuristic beneficial when doing more than two
solves

Spectral Partitioning and Fill-Reducing Nested Dissection Reordering

Nested dissection is a heuristic to reorder a sparse matrix to reduce fill (memory usage and flops) in sparse factorization based solvers. Traditional
implementations of nested dissection do not scale well, and quality degrades with increasing concurrency. Hence, this matrix reordering is becoming a major
bottleneck in sparse direct solvers (SuperLU, STRUMPACK, SymPACK, MUMPS, . . .) and in preconditioners based on sparse factorization like ILU.
We revisit the idea of using spectral partitioning to find a vertex separator in the nested dissection algorithm. Spectral partitioning can be implemented
efficiently on current parallel and heterogeneous architectures, including GPU’s.

I The Graph Laplacian for a graph G (V ,E)

L(G) = diag(degree(vi))− adj(G)

I Fiedler vector: smooth eigenvector of L(G)

I Partition along contour of Fiedler vector, by minimizing

Q(V1,V2) =
cut(V1,V2)

min(Vol(V1),Vol(V2))

I Edge separator to vertex separator S

I Order V1, V2, S , recursion on V1 and V2

I Efficient parallel multilevel Lanczos solver

I OpenMP+MPI, GPU acceleration is WIP

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

 0 50 100 150 200 250 300

||
r|

| 2

Lanczos iterations

fine, random
coarsest

coarse
fine, interpolated

 0

 500

 1000

 1500

 2000

 2500

 3000
 0 500 1000 1500 2000 2500 3000

 0.1

 1

 10

torso3
Transport

memchip
atmosmodd

audikw1
boneS10

cage13
CurlCurl4

G3circuit
HV15R

kktpower
LongCoupdt6

MLGeer

n
n
z(

L+
U

),
 n

o
rm

a
liz

e
d
 w

rt
 M

e
ti

s

AMD
MMD

Sparspak-ND
Metis

Scotch
Spectral

 1

 10

 100

 1000

 1 2 4 8 32 128 512

cores

Time (s)

ParMetis
Spectral

 0

 2x109

 4x109

 6x109

 8x109

 1x1010

 1.2x1010

 1.4x1010

 1.6x1010

 1.8x1010

 2x1010

 1 2 4 8 32 128 512

cores

Fill

ParMetis
Spectral

Pipelined(`) Preconditioned Conjugate Gradients (With S. Cools, Universiteit Antwerpen)

Performance results comparing CG and communication hiding or ”pipelined” variants,
designed for improved strong scaling by overlapping the global reduction phase
(MPI Iallreduce) with computation (SpMV, AXPY, . . .), and other communication.
I Pipelining ` steps can lead to O(`) speedup

I Numerically stable recurrences, high final accuracy [Cools ea., arxiv.org/abs/1902.03100]

I Preconditioned pipelined CG and GMRES in PETSc [Ghysels ea., SISC, 35(1), C48–C71.]

I 3D Hydrostatic Ice Sheet Flow, PETSc SNES ex48

I The Blatter/Pattyn equations are discretized using
200× 200× 150 finite elements

I A Newton-Krylov outer-inner iteration

I Block Jacobi preconditioner (one block per rank;
approx inverted using ILU)

I -ksp type pipelcg -ksp pipelcg pipel

<l> -ksp pipelcg lmin 0.0

-ksp pipelcg lmax 2.0

I Chebyshev iso monomial basis, for stability

https://github.com/pghysels/STRUMPACK/ http://www.sympack.org/ {pghysels,mjacquelin,egng}@lbl.gov

https://github.com/pghysels/STRUMPACK/
http://www.sympack.org/

