
PERFORMANCE PORTABILITY FOR FLASH WITH 
TRANSPILATION
Saurabh Chawdhary1, Mateusz Bysiek2, Mohamed Wahib2, Anshu Dubey1

1Mathematics and Computer Science Division, Argonne National Laboratory
2Tokyo Institute of Technology

[1] Transpyle framework : https://github.com/mbdevpl/transpyle [2] FLASH 5 alpha release : https://github.com/ECP-Astro/FLASH5

§ Pikced hot-spot kernels using profiling tools (score-P and hpctoolkit).
§ Code transformation with transpyler is verified using Sod shock tube,

and supernova simulations.
§ Transpyler is able to generate target code for CPU and GPU

§ Improvements in the performance of transpyler generated code.

CURRENT STATE

FUTURE WORK

METHOD

MOTIVATION
§ Due to exponential rise of heterogeneity in computing, scientific codes

like FLASH have a new challenge with performance portability.
§ Lifecycle of scientific codes is several times that of platforms and devices.
§ Writing code for every new device is difficult and time-consuming task,

and can also lead to combinatorics explosion.
§ Abstractions to enable architecture independence become necessary for

sustainability of HPC scientific codes.
§ FLASH5 combines software design with hierarchical composability at

framework level, and code transformation at physics kernel level with
transpilation to achieve performance portability.

§ The focus of TEAMS work is to apply code transformation on physics
kernels in collaboration with Tokyo Institute of Technology

Fig.1:.A sample pf FLASH simulations

ACKNOWLEDGEMENTS: This work was partially funded by OASCR under the SciDAC TEAMS project, 

§ During the pre-compilation setup phase, the individual components of 
code are selected, dependencies sorted out and a curated application 
is generated for simulation at hand.

FLASH is a multi-component, multi-physics code serving several
science domains.

Core collapse supernova

Fig. 2: Steps for realization of performance portability.

Ø access to all configuration (FLASH stores it as files);
Ø FLASH internal preprocessing is finished;
Ø allow user to make adjustments after setup (normally also allowed);
Ø allow user to re-compile after additional hand-tuning of the 

transpiled code.

§ Translation + Compilation = Transpilation.

Fig. 3: FLASH optimization using transpyle framework.

§ The transpyler automatically alters the code towards most efficient 
execution depending on:
Ø internal structure of the kernels (operations, data dependencies, 

locality);
Ø relationships between different kernels;
Ø system architecture (is it multi-core, many-core, GPU, or 

heterogeneous);
Ø simulation configuration (blocks per rank, grid size, etc.).

Galaxy clusters

Type Ia supernova

Laser experiments 

▪ Convert code to fine-grained kernels – better exposure for 
optimization possibilities
– Transpiler inlines functions – avoid overhead of function calls
– Code still in Fortran

▪ Identify hot-spot kernels for experimentation

AT FLASH END

https://github.com/mbdevpl/transpyle
https://github.com/ECP-Astro/FLASH5

