
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

• Improved mesh quality in areas where flux curves interact with

reactor wall

• Improved matched mesh gradation at x-point

• Reordering of mesh data for better memory access during XGC

simulations

XGC Meshing

PUMIpic – Components to support PIC operations on

distributed unstructured meshes (2D and 3D)

 Mesh centric – no independent particle structure

 Distributed mesh with overlaps (PICparts)

 Particle migration and load balancing between

pushes

 Adjacency-based particle containment determination

 Focused on structures for execution on GPUs

 Omega GPU ready mesh topology being integrated

 Particles stored by element in new SCS data

structure

 Test shows on-par performance using less memory

XGC based on Parallel Unstructured Mesh PIC (PUMIpic)

• On 256 nodes of Summit, GPU version has 15X speedup

over CPU only

• Good weak scaling up to full Summit using 1.24 trillion

electrons on GPU and 1.24 trillion ions on CPU

Good Weak Scaling to Full Summit

• XGC Gyrokinetic particle-in-cell (PIC) code

is also part of ECP-WDM (whole device

model) and ECP-CoPA (particle app co-

design)

• XGC is part of Early Science Programs on

Summit, Aurora and Perlmutter

• XGC uses an unstructured grid in poloidal

plane, each MPI rank gets particles from a

section of poloidal plane

• Main computational kernel is electron push

• Utilizes Kokkos via Cabana of CoPA

XGC on Summit Details on Cabana Version

• XGC in Fortran, Cabana and Kokkos in C++

• Allocate particle storage in Cabana and use macros for generating Fortran

interface enables easy porting of new kernels

• Single code for CPU and GPU

• Electron push kernel in CUDA Fortran (C++ version under development)

Performance on KNL

• Cabana version of XGC has been ported to Cori KNL

• Roofline analysis of vectorized version of XGC shows in-lining and re-

factoring useful in optimizing use of wide-vector registers. However,

vector dependences and data type conversions limiting peak performance

Performance Analytics for Computational Experiments for XGC

• Central hub of performance data,

already used in Climate application

• Interactively deep-dive and track

performance benchmark

• Facilitate performance analysis:

• Load balancing

• Identification of bottlenecks

• Inform targeted optimization

efforts

1. Oak Ridge National Laboratory , 2. Princeton Plasma Physics Laboratory, 3. Rensselaer Polytechnic Institute, 4. PHWorley Consunting, 5. Argonne National Laboratory
Funding is from DOE ASCR and FES Offices

E. D’Azevedo1, A, Scheinberg2, M. Shephard3, P. Worley4, S. Sreepathi1, B. MacKie-Mason5, T. Willians5,
and the SciDAC HBPS XGC Team

Performance Enhancements of XGC

Before mesh quality

improvement
After mesh quality

improvement

Improved mesh gradation at X-point

SCS element

based

Particle data

structure

no sorting full sorting

ptcls (Ki) time (s) time (s)

128 2.298661 3.642041

256 2.895464 3.415048

512 3.79263 3.851178

1024 4.972283 4.090044

2048 7.089673 4.389198

4096 11.578984 4.799475

Implementing XGC physics and

Numerics with PUMPIpic:

• Since all core data structures are changed

code, code being rewritten in C++

Status of implementation:

• Based on original PUMI structures – new GPU

focused structures will be integrated when

complete

• Core mesh/particle interaction operations in

place

• Mesh solve in place

• Ion and electron push (including subcycling)

implemented

• Initial df simulations executed

• Performance evaluation and improvement

underway

• Initial push results show 25% improvement

on many core system

• Other steps slower due to need to modify

mesh copies (underway)

Snapshot of electrostatic potential
fluctuation (a) at toroidal angle
z=0,p/2,p,3p/2 from left to right
and (b) in local domain of each
group at z=0

XGC_core/pushe.F90:

subroutine pushe

call sort_particles ! Sort particles by grid cell

do iptl=1, n_particles ! Loop over particles

do ic=1, n_cycles ! Subcycle electrons

do irk=1, n_runge_kutta ! RK4 loop

call search ! Determine which grid cell particle
inhabits

call gather_field ! Interpolate field at particle location

call calculate_dx ! Solve physics: dx/dt = f(E,…)

call advance_particles ! Update particle position and velocity

end do

end do

end do

end subroutine pushe

Tree and Flame Graphs

https://pace.ornl.gov

Must cast Cabana array into

predefined Fortran type for

use in Fortran kernels using

ISO_C_BINDING

Two PICparts

