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XGC I/O Performance Coupling Workflows

EFFIS

We maintain cutting edge I/O performance for 
XGC on various file systems,  including SSDs and 
NVMe, on Cori, Theta, and Summit.

The Fusion HPBS project is focusing on researching multi-way 
coupling science to study multi-scale/multi-physics.

1) XGC and hPIC
• Plasma-material-interaction hPIC code coupled into XGC
• hPIC code has 6D marker particles, while XGC has 5D 

marker particles
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Our team continues to innovate to take full 
advantage of the new memory and storage 
technologies, and to provide the highest levels 
of performance. 

XGC Software Process

Agile XGC development
• Incorporate a modern 

CMake build system
• Continuous Integration 

testing system
• Git workflow incorporated with CI system
• Integrate CDash into github
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XGC ADIOS enables:
• In-memory coupling
• Inter-network coupling
• WAN coupling 
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2) XGC and F-analysis coupling
In XGC and F analysis coupling, we move the F computation to a dedicated analysis 
code. XGC asynchronously offloads those computations via ADIOS and improves 
computational performance

Research Details
a) To improve movement performance and flexibility, HBPS 

integrated with ADIOS for data management.
b) Developing multi-way coupling science cases to study multi-

scale/multi-physics scenarios.
c) Exploiting data locality to improve performance

• XGC computes 5D  f and electromagnetic field
• Hand-off computational reduction of physics  from XGC
• Analysis code consumes in-memory f data

EFFIS is an integrated platform 
of services to compose, launch, 
monitor, and control coupled 
applications.
EFFIS can simplify the 
complexity of composing, 
running, and monitoring 
applications on HPC systems.
We integrate HBPS with EFFIS
to “easily” compose coupled 
HBPS workflows on HPC 
Resources (Cori, Theta, and 
Summit).
EFFIS's using a python-like 
interface can allow “easy” 
integration to visualization 
tools (Visit, Python notebooks)
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EFFIS is integration with HBPS can provide:
• High Performant I/O for multiple codes
• Process placement (node sharing, co-location 

of codes on a node, etc.)
• Online dashboard functionality

• Services for concurrent analysis/visualization
• Run archival (e.g. long-term tape storage)
• Source code association with runs

groups:
diagnosis.1d:
plot:
psi-plot:
x: psi
y: i_gc_density_1d

run:
xgc:
processes: 1024
processes-per-node: 32
path: xgc-build/xgc1-es
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Example of EFFIS 
specification file.
XGC run is 
configured to run 
with analysis 
application.

Example of EFFIS 
instrumentation in 
XGC code using simple 
@effis pragmas.
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XGC Checkpoint Writing on Summit GPFS with 
I/O aggregation
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• Improved mesh quality in areas where flux curves interact with 
reactor wall

• Improved matched mesh gradation at x-point  
• Reordering of mesh data for better memory access during XGC 

simulations

XGC Meshing

PUMIpic – Components to support PIC operations on 
distributed unstructured meshes (2D and 3D)
■ Mesh centric – no independent particle structure 
■ Distributed mesh with overlaps (PICparts)
■ Particle migration and load balancing between 

pushes
■ Adjacency-based particle containment determination
■ Focused on structures for execution on GPUs
■ Omega GPU ready mesh topology being integrated
■ Particles stored by element in new SCS data 

structure
■ Test shows on-par performance using less memory

XGC based on Parallel Unstructured Mesh PIC (PUMIpic)

• On 256 nodes of Summit, GPU version has 15X speedup 
over CPU only

• Good weak scaling up to full Summit using 1.24 trillion 
electrons on GPU and 1.24 trillion ions on CPU

Good Weak Scaling to Full  Summit

• XGC is part of Early Science Programs on 
Summit,  Aurora and Perlmutter

• XGC is an ECP code
• XGC uses an unstructured grid in poloidal 

plane, each MPI rank gets particles from a 
section of poloidal plane

• Main computational kernel is electron push
• Utilizes Kokkos

XGC on Summit Details on XGC-Kokkos

• XGC in Fortran, Kokkos in C++
• Fortran interface (Cabana) enables easy porting of new kernels
• Single code for CPU and GPU
• Electron push kernel in CUDA Fortran (C++ version under development)

Performance on KNL

• Kokkos version of XGC has been ported to Cori KNL
• Roofline analysis of vectorized version of XGC shows in-lining and re-

factoring useful in optimizing use of wide-vector registers. However, 
vector dependences and data type conversions limiting peak performance

Performance Analytics for Computational Experiments  for XGC

• Central hub of performance data, 
already used in Climate application

• Interactively deep-dive and track 
performance benchmark

• Facilitate performance analysis:
• Load balancing
• Identification of bottlenecks
• Inform targeted optimization 

efforts
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Performance Enhancements of XGC

Before mesh quality 
improvement

After mesh quality 
improvement

Improved mesh gradation at X-point

SCS element 
based
Particle data 
structure

no sorting full sorting

ptcls (Ki) time (s) time (s)

128 2.298661 3.642041

256 2.895464 3.415048

512 3.79263 3.851178

1024 4.972283 4.090044

2048 7.089673 4.389198

4096 11.578984 4.799475

Implementing XGC physics and
Numerics with PUMPIpic:
• Since all core data structures are changed 

code, code being rewritten in C++

Status of implementation:
• Based on original PUMI structures – new GPU 

focused structures will be integrated when 
complete

• Core mesh/particle interaction operations in 
place

• Mesh solve in place
• Ion and electron push (including subcycling) 

implemented
• Initial df simulations executed
• Performance evaluation and improvement 

underway
• Initial push results show 25% improvement 

on many core system
• Other steps slower due to need to modify 

mesh copies (underway)

Snapshot of electrostatic potential 
fluctuation (a) at toroidal angle 
z=0,p/2,p,3p/2 from left to right 
and (b) in local domain of each 
group at z=0

XGC_core/pushe.F90:

subroutine pushe
call sort_particles ! Sort particles by grid cell
do iptl=1, n_particles ! Loop over particles
do ic=1, n_cycles ! Subcycle electrons
do irk=1, n_runge_kutta ! RK4 loop
call search ! Determine which grid cell particle inhabits
call gather_field ! Interpolate field at particle location
call calculate_dx ! Solve physics: dx/dt = f(E,…) 
call advance_particles ! Update particle position and velocity 

end do
end do

end do
end subroutine pushe

Tree and Flame Graphs

https://pace.ornl.gov

Must cast Cabana array into 
predefined Fortran type for 
use in Fortran kernels using 
ISO_C_BINDING

Two PICparts


