
Data Management Challenges
In HBPS

Jong Youl Choi1, Michael Churchill2, Davide Curreli3, Sonata Mae Valaitis3, Robert Hager2,
Seung-Hoe Ku2, E. D’Azevedo1, Bill Hoffman4, David Pugmire1, Scott Klasky1, C. S. Chang3

1ORNL, 2PPPL, 3Univ. of Illinois Urbana-Champaign, 4Kitware

Acknowledgments: Work supported by U.S. DOE Office of Science, ASCR and
FES. This research used resources of OLCF, ALCF, and NERSC, which are DOE
Office of Science User Facilities.

XGC I/O Performance Coupling Workflows

EFFIS

We maintain cutting edge I/O performance for
XGC on various file systems, including SSDs and
NVMe, on Cori, Theta, and Summit.

The Fusion HPBS project is focusing on researching multi-way
coupling science to study multi-scale/multi-physics.

1) XGC and hPIC
• Plasma-material-interaction hPIC code coupled into XGC
• hPIC code has 6D marker particles, while XGC has 5D

marker particles

I/O
System

Summit
ORNL

Theta
ANL

Cori
NERSC

Locality Node local Node local Remote Shared
System Local filesystem Local filesystem Cray WARP

Capacity 800 GB
per node

128 GB
per node

288 Server
50 TB limit

per job
Parallel

Filesystem
GPFS

Lustre
Lustre Lustre

Our team continues to innovate to take full
advantage of the new memory and storage
technologies, and to provide the highest levels
of performance.

XGC Software Process

Agile XGC development
• Incorporate a modern

CMake build system
• Continuous Integration

testing system
• Git workflow incorporated with CI system
• Integrate CDash into github

hPIC

Put

In Situ Staging

Get

XGC

ADIOS

In Situ
Visualization

Performance
Monitoring

Coupling
Manager

0

500

1000

1500

2000

2500

3000

3500

64 128 256 512 1024

Th
ro

ug
hp

ut
 (G

B/
se

c)

Number of Nodes

Theta NVMe

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

64 128 256 512 1024

Th
ro

ug
hp

ut
 (G

B/
se

c)

Number of Nodes

Summit NVMe

XGC ADIOS enables:
• In-memory coupling
• Inter-network coupling
• WAN coupling

f_total Data
Ftotal

Analysis

TAU In Situ
Performance
Monitoring

EFFIS Workflow
Management

VTK-M In Situ
Visualization

Python
Ad Hoc Analysis

Staging
Services

Staging
Services

2) XGC and F-analysis coupling
In XGC and F analysis coupling, we move the F computation to a dedicated analysis
code. XGC asynchronously offloads those computations via ADIOS and improves
computational performance

Research Details
a) To improve movement performance and flexibility, HBPS

integrated with ADIOS for data management.
b) Developing multi-way coupling science cases to study multi-

scale/multi-physics scenarios.
c) Exploiting data locality to improve performance

• XGC computes 5D f and electromagnetic field
• Hand-off computational reduction of physics from XGC
• Analysis code consumes in-memory f data

EFFIS is an integrated platform
of services to compose, launch,
monitor, and control coupled
applications.
EFFIS can simplify the
complexity of composing,
running, and monitoring
applications on HPC systems.
We integrate HBPS with EFFIS
to “easily” compose coupled
HBPS workflows on HPC
Resources (Cori, Theta, and
Summit).
EFFIS's using a python-like
interface can allow “easy”
integration to visualization
tools (Visit, Python notebooks)

Compose

Compose

Compose

Compose

EFFIS

Su
bm

it
Co

m
m

un
ica

te

M
on

ito
r

Pr
ov

en
an

ce

Toolkit
XGC1 XGCa

M3DC1 hPIC

Matlab Visit

Paraview Python

EFFIS is integration with HBPS can provide:
• High Performant I/O for multiple codes
• Process placement (node sharing, co-location

of codes on a node, etc.)
• Online dashboard functionality

• Services for concurrent analysis/visualization
• Run archival (e.g. long-term tape storage)
• Source code association with runs

groups:
diagnosis.1d:
plot:
psi-plot:
x: psi
y: i_gc_density_1d

run:
xgc:
processes: 1024
processes-per-node: 32
path: xgc-build/xgc1-es

Execution
Management

Analysis/Visual
ization

Integration

Example of EFFIS
specification file.
XGC run is
configured to run
with analysis
application.

Example of EFFIS
instrumentation in
XGC code using simple
@effis pragmas.

hPIC

XGC

0

100

200

300

400

500

600

700

800

900

256 512 1024 2048

Th
ro

ug
hp

ut
 (

GB
/s

ec
)

Nodes

XGC Checkpoint Writing on Summit GPFS with
I/O aggregation

RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

• Improved mesh quality in areas where flux curves interact with
reactor wall

• Improved matched mesh gradation at x-point
• Reordering of mesh data for better memory access during XGC

simulations

XGC Meshing

PUMIpic – Components to support PIC operations on
distributed unstructured meshes (2D and 3D)
■ Mesh centric – no independent particle structure
■ Distributed mesh with overlaps (PICparts)
■ Particle migration and load balancing between

pushes
■ Adjacency-based particle containment determination
■ Focused on structures for execution on GPUs
■ Omega GPU ready mesh topology being integrated
■ Particles stored by element in new SCS data

structure
■ Test shows on-par performance using less memory

XGC based on Parallel Unstructured Mesh PIC (PUMIpic)

• On 256 nodes of Summit, GPU version has 15X speedup
over CPU only

• Good weak scaling up to full Summit using 1.24 trillion
electrons on GPU and 1.24 trillion ions on CPU

Good Weak Scaling to Full Summit

• XGC is part of Early Science Programs on
Summit, Aurora and Perlmutter

• XGC is an ECP code
• XGC uses an unstructured grid in poloidal

plane, each MPI rank gets particles from a
section of poloidal plane

• Main computational kernel is electron push
• Utilizes Kokkos

XGC on Summit Details on XGC-Kokkos

• XGC in Fortran, Kokkos in C++
• Fortran interface (Cabana) enables easy porting of new kernels
• Single code for CPU and GPU
• Electron push kernel in CUDA Fortran (C++ version under development)

Performance on KNL

• Kokkos version of XGC has been ported to Cori KNL
• Roofline analysis of vectorized version of XGC shows in-lining and re-

factoring useful in optimizing use of wide-vector registers. However,
vector dependences and data type conversions limiting peak performance

Performance Analytics for Computational Experiments for XGC

• Central hub of performance data,
already used in Climate application

• Interactively deep-dive and track
performance benchmark

• Facilitate performance analysis:
• Load balancing
• Identification of bottlenecks
• Inform targeted optimization

efforts

1. Oak Ridge National Laboratory , 2. Princeton Plasma Physics Laboratory, 3. Rensselaer Polytechnic Institute, 4. PHWorley Consunting, 5. Argonne National Laboratory
Funding is from DOE ASCR and FES Offices

E. D’Azevedo1, A, Scheinberg2, M. Shephard3, P. Worley4, S. Sreepathi1, B. MacKie-Mason5, T. Willians5,
and the SciDAC HBPS XGC Team

Performance Enhancements of XGC

Before mesh quality
improvement

After mesh quality
improvement

Improved mesh gradation at X-point

SCS element
based
Particle data
structure

no sorting full sorting

ptcls (Ki) time (s) time (s)

128 2.298661 3.642041

256 2.895464 3.415048

512 3.79263 3.851178

1024 4.972283 4.090044

2048 7.089673 4.389198

4096 11.578984 4.799475

Implementing XGC physics and
Numerics with PUMPIpic:
• Since all core data structures are changed

code, code being rewritten in C++

Status of implementation:
• Based on original PUMI structures – new GPU

focused structures will be integrated when
complete

• Core mesh/particle interaction operations in
place

• Mesh solve in place
• Ion and electron push (including subcycling)

implemented
• Initial df simulations executed
• Performance evaluation and improvement

underway
• Initial push results show 25% improvement

on many core system
• Other steps slower due to need to modify

mesh copies (underway)

Snapshot of electrostatic potential
fluctuation (a) at toroidal angle
z=0,p/2,p,3p/2 from left to right
and (b) in local domain of each
group at z=0

XGC_core/pushe.F90:

subroutine pushe
call sort_particles ! Sort particles by grid cell
do iptl=1, n_particles ! Loop over particles
do ic=1, n_cycles ! Subcycle electrons
do irk=1, n_runge_kutta ! RK4 loop
call search ! Determine which grid cell particle inhabits
call gather_field ! Interpolate field at particle location
call calculate_dx ! Solve physics: dx/dt = f(E,…)
call advance_particles ! Update particle position and velocity

end do
end do

end do
end subroutine pushe

Tree and Flame Graphs

https://pace.ornl.gov

Must cast Cabana array into
predefined Fortran type for
use in Fortran kernels using
ISO_C_BINDING

Two PICparts

