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The Long Standing Fission Gas Problem Introduction to Xolotl (https://github.com/ORNL-Fusion/xolotl)
Xolotl, named after the Aztec god of death and lightning, predicts the evolution of gas in a solid by solving the cluster dynamics
formulated Advection-Diffusion-Reaction (ADR) equations with a volumetric source term, and is being used by both the NE (fission
gas) and FES (Plasma Surface Interactions) SciDAC projects

δtC̄ = Ḡ+D∇2C̄ −∇ν̄C − Q̄(C̄)

• A network of clusters represents the material (interstitial and vacancy) and the gas atoms and clusters.

• The solver (PETSc) is in charge of the time evolution of the concentrations.

• The re-solution of clusters due to thermal spikes is modeled through Xei → Xei−1 + Xe1 with the associated rate described
next.

Re-Solution Model
Extensive molecular dynamics simulation study was performed to obtain the Xe re-solution rates due to thermal spike as a function
Xe bubble radius, for several values of the ratio between the thermal spike energy and the total electronic stopping power, and for a
fission rate density of 10−8 /nm3 /s.

In Xolotl we use the re-solution rate
(10−4/s):
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where x is the bubble radius in nm and y(0)
is the asymptotic value at x = 0.

Average radius is evaluated taking into
account Xe bubbles larger than 2nm diameter
(containing 100 Xe atoms).

⇒ The effect of re-solution is much larger
at lower temperature.
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Next Steps

Current and future work:

• Evaluate the effect of the Xe density in combination with re-solution on the average
radius

• Include the diffusion model developed from DFT simulations

• Extend the reaction network to explicitely model fuel vacancies

• XRN: XDSpace-based implementation of Xolotl reaction network
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Code Development
Recent performance engineering:

• Built-in timers showed increasing cost in Xolotl’s startStop1D() PETSc callback
as number of nodes increased

• Diagnosed as I/O problem when writing HDF5 concentration file

• Changing code to use true HDF5 parallel write gave substantial performance and
performance variability improvement

Elapsed time as reported by built-in Xolotl
timers when running on Oak Ridge Leadership
Computing Facility (OLCF) Eos Cray XC30.
32 processes per node. Data shown is max of
reported timer value across all processes, aver-
aged over at least three runs.

Elapsed time as reported by built-in Xolotl
timers when running on OLCF Eos Cray XC30.
32 processes per node. Data shown is max of
reported timer value across all processes, av-
eraged over at least three runs. Bars show
min/max of values. ⇒ 57.5x faster at 4
nodes.

Adding accelerator support:

• After evaluation of alternatives (e.g., CUDA, OpenMP offload), we plan to use
Kokkos as portability layer for executing performance-critical code on GPUs and
CPUs

• Ongoing effort to adapt Xolotl data structures for Kokkos’ View type

– Xolotl (e.g., reaction network) currently creates many small C++ objects in
deep, complicated organization, connected by pointers

– Kokkos View is a multidimensional, rectangular array
– XDSpace: a C++ library for decomposing a multidimensional space (e.g.,

Xolotl’s phase space), with flexible refinement and Kokkos support

• Investigating how to incorporate Kokkos acceleration into an application that uses
PETSc


