Accelerating LQCD Calculations Using the Tiramisu Compiler

Riyadh Baghdadi, Michael Wagman,
Andrew Pochinsky, Saman Amarasinghe, William Detmold

H Bl Massachusetts
I I Institute of

Technology

- The Standard Model of particle physics combines - To solve QCD in a controlled manner requires the a — L
the strong, weak and electromagnetic forces numerical method of lattice QCD \/Lilf
- The strong force, mathematically described by Quantum - Discretise and compactify spacetime, solve field L**r
Chromodynamics (QCD), binds quarks and gluons together equations on 4D spacetime lattice using Metropolis Ry =
into protons and nuclei style algorithms
- Strong interactions are critical to understanding the - Simple aspects of proton - neutron scattering have
structure of the proton and nuclei, the expansion of been studied in lattice QCD using simulations like the red cartoon

the universe, searches for dark matter and physics
beyond the Standard Model

Nucleus

Neutron

)
& 4
F.
,. £
r a7
[
g
i

Quark
lines

Proton Neutron

Proton Neutron

- Simulations like the blue cartoon provide greater statistical precision
and greater control over the proton-neutron scattering state, but are
more computationally demanding

Tiramisu Highlights
The Tiramisu Compiler

- A simple C++ API to express tensor operations

- Large set of optimizations: multicore parallelization, vectorization,
blocking, operation fusion, data transformations, loop reordering, ...

Generate fast Target different - Manual code optimization
code architectures | L o
- Soon: automatic code optimization, integration in NumPy
Target Architectures Pseudocode Tiramisu Code
for (i=0; i<100; i++) // Tiramisu algorithm

. : : : for (j=0; j<100; j++) var i("1", 0, 100), j("j", 0, 100);

Distribution/Communication (MPI) C(-Il,J) =JO; J computation C({IJ,j }J’ 0):
GPUs // Optimizations

X86 CPUs (CUDA) C.parallelize(i);

C.vectorize(j, 4);

Evaluation on Multicore CPU

Tiramisu VS Reference C Implementation (Auto-vectorized) Convolution - Tiramisu VS Intel MKL (CPU)

130x speedup

Optimizations:

- Vectorized (AVX2)

- Parallelized (24-cores, single-node)
- Full fusion

- Loop reordering

- Data layout optimization

Normalized Execution Time

http://tiramisu-compiler.org/

