

Data Analytics Activities

¹Oak Ridge National Laboratory

²Dartmouth College

³Florida State University

⁴University of Tennessee Knoxville

FASTMath Team Members: R. Archibald¹, F. Bao³, A. Gelb², H. Tran¹, & C. Webster^{1&4}

Sparse functional representation of data, to enable faster IO and analysis of big datasets

In-situ analysis of streaming climate data

- Developing effective online data monitoring and archiving strategy over temporal and spatial domains while respecting practical storage and memory capacity constraints
- Streaming methods improves the quality and quantity of information available to scientists for analysis

Atomic Forge Analysis

- Need fast accurate forward models for atomic states of tracked atoms.
- Need computational control of beam position and intensity.
- Will enable 3D atomic fabrication: quantum computing, spintronics, etc.

Left: Tracking of multiple well potential in 1D. Right: Tracking of multiple well lattice potential in 2D

Machine Learning of Streaming Data

Developed a deep-learning based compression artifact removal approach that provides fast enhancement (using trained model) compared to state-of-theart compressed sensing (CS) approach

Sparse data representations

RDN -

→ JPEG

Streaming dictionary reconstruction of above barotropic instability capable of highly accurate (10-3 relative error) reconstruction of entire simulation using only 25 basis set.

Sampling and fast algorithms

Ultrasound

Tomography

Thin plate projections of additive manufactured compound

Knowledge Extraction from Images

- Atomic resolution imaging data is readily abundant given advances in instrumentation
- No framework to extract knowledge from data
- We utilize concept of statistical distance to derive materials properties from atomic resolved data, providing a generative model exists

- Acquisition of currentvoltage curves for electronic materials characterization at the nanoscale dates back decades
- We increase speed of acquisition by 1000x through full information capture + Bayesian inference methods

More Information: http://www.fastmath-scidac.org or contact Rick Archibald, Archibaldrk@ornl.gov

