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Scientific requirements

Current generation land surface models (LSMs), including ELM,
routinely neglect many critical multi-component, multi-physics
processes such as:
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Scientific requirements

Current generation land surface models (LSMs), including ELM,
routinely neglect many critical multi-component, multi-physics
processes such as:
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Computational requirements

E3SM'’s 10-year vision of a sub-kilometer resolution in terrestrial
components imposes several key computation requirements for the
terrestrial dynamical core (dycore):

019 unknowns

» Scalable solver for nonlinear parabolic PDE with 1
» Support unstructured grids
» Spatial discretization that accounts for non-orthogonal grids

» Flexible framework to assemble a tightly coupled multi-component,
multi-physics problem

» Runtime configurability to use a range of numerical algorithms
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E3SM'’s 10-year vision of a sub-kilometer resolution in terrestrial
components imposes several key computation requirements for the
terrestrial dynamical core (dycore):

» Scalable solver for nonlinear parabolic PDE with 101° unknowns
» Support unstructured grids
» Spatial discretization that accounts for non-orthogonal grids

» Flexible framework to assemble a tightly coupled multi-component,
multi-physics problem

» Runtime configurability to use a range of numerical algorithms

Develop a rigorously verified, spatially adaptive, scalable,
multi-physics dycore for global-scale modeling of three-dimensional
subsurface processes in E3SM. The dycore will use PETSc to
provide numerical solution of discretized equations.



Early results: Spatial discretization

> Identified two spatial discretization methods that account for
non-orthogonal grids and have been previously applied to solve for
flow and transport processes

MultiPoint Flux Approximation: O-method Mixed FE with BDM1 basis
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» Both methods lead to similar set of nonlinear equations with
unknowns pressure values at cell centers



Early results: Spatial discretization

» Developed a prototype code for solving 2D steady-state diffusion
equation using MPFA-O method

V- (KVP) =0 with
K =1, Psouth = 4, Pnorth = 3, Pright =1, and Py =2

> Preliminary comparison of our results show good agreement with
the MATLAB Reservoir Simulation Toolbox



Early results: Temporal discretization

» Implemented PETSc TS-based solver in PFLOTRAN, which uses
first-order spatial discretization

Problem setup: Evolution of liquid pressure towards a hydrostatic
equilibrium starting with homogenous conditions in a 1D soil
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Implementation
/%

There will need to be a quadrature for each element type in the
mesh. Neither is this dim independent. It could be generalized

simply use as locations the vertices of the reference element.

*/
#undef __FUNCT__

#define __FUNCT__ "PetscDTWheelerYotovQuadrature"

PetscErrorCode PetscDTWheelerYotovQuadrature(DM dm,AppCtx *user)
{

PetscFunctionBegin;
PetscErrorCode ierr;
ierr = PetscQuadratureCreate(PETSC_COMM_SELF,&(user->q));CHKERRQ(ierr);
PetscInt dim=2,ng=4;

PetscReal xx,w;
ierr = PetscM:
ierr = Petsch
x[0] = -1.0;

naxdim, &x) ;CHKERRQ(ierr) ;
ng ,&w);CHKERRQ(ierr);
-1.8;

x[2] = 1.0; x[3) = -1.0;
x[4] = -1.0; x[5] = 1.8;
x[6] = 1.0; x[7] = 1.0;
wie) = 0.25; wl1) = o,

wi2) = 0.25; w(3] = 0.25;
ierr = PetscQuadratureSetData(user->a,dim,1,nq, x,w) ;CHKERRQ(ierr) ;
PetscFunctionReturn(8);

» Discussions between BER and ASCR colleagues have been
extremely useful in translating the mixed FE theory into code

» Application of PETSc's Discretization Technology (DT)
capability to mFE discretization is expected to improve DT
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