**Development of Terrestrial Dynamical Cores for E3SM** 

Gautam Bisht<sup>1</sup>

<sup>1</sup>Climate & Ecosystem Sciences Division Lawrence Berkeley National Laboratory

2018 Scientific Discovery through Advanced Computing (SciDAC-4) Principal Investigator Meeting

July 24, 2018



Current generation land surface models (LSMs), including ELM, routinely neglect many critical multi-component, multi-physics processes such as:

Current generation land surface models (LSMs), including ELM, routinely neglect many critical multi-component, multi-physics processes such as:

 Lateral redistribution of water, energy, and nutrients



Current generation land surface models (LSMs), including ELM, routinely neglect many critical multi-component, multi-physics processes such as:

- Lateral redistribution of water, energy, and nutrients
- Transport of water through soil-plant continuum



Current generation land surface models (LSMs), including ELM, routinely neglect many critical multi-component, multi-physics processes such as:

- Lateral redistribution of water, energy, and nutrients
- Transport of water through soil-plant continuum
- Advective transport of energy



Kurylyk et al. (2014), Earth-Science Reviews

## Computational requirements

E3SM's 10-year vision of a sub-kilometer resolution in terrestrial components imposes several key computation requirements for the terrestrial dynamical core (dycore):

- ► Scalable solver for nonlinear parabolic PDE with 10<sup>10</sup> unknowns
- Support unstructured grids
- Spatial discretization that accounts for non-orthogonal grids
- Flexible framework to assemble a tightly coupled multi-component, multi-physics problem
- Runtime configurability to use a range of numerical algorithms

### Computational requirements

E3SM's 10-year vision of a sub-kilometer resolution in terrestrial components imposes several key computation requirements for the terrestrial dynamical core (dycore):

- Scalable solver for nonlinear parabolic PDE with 10<sup>10</sup> unknowns
- Support unstructured grids
- Spatial discretization that accounts for non-orthogonal grids
- Flexible framework to assemble a tightly coupled multi-component, multi-physics problem
- Runtime configurability to use a range of numerical algorithms

Develop a rigorously verified, spatially adaptive, scalable, multi-physics dycore for global-scale modeling of three-dimensional subsurface processes in E3SM. The dycore will use PETSc to provide numerical solution of discretized equations.

## Early results: Spatial discretization

 Identified two spatial discretization methods that account for non-orthogonal grids and have been previously applied to solve for flow and transport processes



 Both methods lead to similar set of nonlinear equations with unknowns pressure values at cell centers

#### Early results: Spatial discretization

 Developed a prototype code for solving 2D steady-state diffusion equation using MPFA-O method

$$\nabla \cdot (K \nabla P) = 0 \text{ with}$$
  
K = 1, P<sub>south</sub> = 4, P<sub>north</sub> = 3, P<sub>right</sub> = 1, and P<sub>left</sub> = 2



 Preliminary comparison of our results show good agreement with the MATLAB Reservoir Simulation Toolbox

### Early results: Temporal discretization

 Implemented PETSc TS-based solver in PFLOTRAN, which uses first-order spatial discretization

Problem setup: Evolution of liquid pressure towards a hydrostatic equilibrium starting with homogenous conditions in a 1D soil column



#### **BER-ASCR** Partnership



#### Implementation There will need to be a quadrature for each element type in the mesh. Neither is this dim independent. It could be generalized to simply use as locations the vertices of the reference element. \*/ #undef FUNCT #define FUNCT "PetscDTWheelerYotovQuadrature" PetscErrorCode PetscDTWheelerYotovQuadrature(DM dm.AppCtx \*user) PetscFunctionBegin; PetscErrorCode ierr; ierr = PetscQuadratureCreate(PETSC\_COMM\_SELF,&(user->q));CHKERRQ(ierr); PetscInt dim=2,ng=4; PetscReal \*x.\*w: ierr = PetscMalloc1(ng\*dim.&x):CHKERRQ(ierr): ierr = PetscMalloc1(ng .&w):CHKERRQ(ierr): x[0] = -1.0; x[1] = -1.0;x[2] = 1.0; x[3] = -1.0;x[4] = -1.0; x[5] = 1.0;x[6] = 1.0; x[7] = 1.0;w[0] = 0.25; w[1] = 0.25; w[2] = 0.25; w[3] = 0.25;ierr = PetscQuadratureSetData(user->q,dim,1,nq,x,w):CHKERRQ(ierr): PetscFunctionReturn(0):

- Discussions between BER and ASCR colleagues have been extremely useful in translating the mixed FE theory into code
- Application of PETSc's Discretization Technology (DT) capability to mFE discretization is expected to improve DT

Thank you