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The Challenge

● Poor time-step convergence in EAMv1 and 
several predecessors

● Accuracy contrast between full-model and 
dynamical-core-only results

Time Stepping Error and 
Self-convergence Rate in E3SMv0

● Implications
○ Poor convergence ➔ code is not doing 

what it is supposed to do
○ Strong time-step sensitivity ➔ change in 

step size can lead to physically 
significant changes in model climate

Multi-year Mean Boreal Summer Cloud 
Fraction Change Caused by Reduction of 
Time Step Size (5 min – 30 min) in E3SMv0



The Challenge, cont’d

● Poor time-step convergence in EAMv1 and 
several predecessors

● Accuracy contrast between full-model and 
dynamical-core-only results

● Implications
○ Poor convergence ➔ code is not doing 

what it is supposed to do
○ Strong time-step sensitivity ➔ change in 

step size can lead to physically 
significant changes in model climate

● Atmospheric physics parameterizations
○ Traditional focus on conceptualization of 

physical understanding
○ Practical motivations to use long step sizes
○ Unit testing and verification are rarely done

Time Stepping Error and 
Self-convergence Rate in E3SMv1

Multi-year Mean Boreal Summer Cloud 
Fraction Change Caused by Reduction of 
Time Step Size (5 min – 30 min) in E3SMv1



Our Approach
● Use short ensemble tests to assess solution convergence
● Use a hierarchy of simplified model configurations/formulations to pinpoint 

problematic model components and code pieces
● Conduct formal mathematical analysis on model formulation and 

discretization error
● Develop alternative time integration methods using theories of deterministic

and stochastic differential equations.

Objectives
● Understand causes of poor convergence
● Develop alternative time integration methods to improve solution 

convergence and accuracy



Highlights of First Results



A (not-so-)Simple Cloud Model

● E3SM’s dynamical core + cloud formation through 
large-scale condensation

● Simplified model formulation 
○ Facilitates math-climate collaboration 
○ Captures essence of commonly used assumptions

Mean climate in full-model 
simulations with CAM4 physics 

Total cloud cover

Longwave cloud forcing

Revised splitting
Original splitting

Revised splitting
Original splitting

Progress
● Restored 1st-order convergence
● Demonstrated loss of convergence due to 

suboptimal choices made for
○ Model’s continuous formulation
○ Physics-dynamics coupling (splitting)
○ Time stepping within physics

Key message to atmosphere modelers:
● Proper convergence is achievable and 

impactful (see figure)



A (not-so-)Simple Cloud Model, cont’d

● Formal error analysis
○ Assuming a two-process integration scheme with/without sequential splitting

and finite difference approximations

○ Confirmed the expected rate of convergence (1st-order)
○ Clarified the necessary conditions for achieving such a rate
○ Verified failure of model to meet necessary conditions

● Revised closure
○ Avoids the singularity that caused 

problem in the original model
○ Shows good convergence
○ Is less sensitive to unphysical 

features in initial condition

Time Stepping Error and Convergence 
Rate with Revised Closure



E3SM’s Cloud Parameterization — CLUBB

● Comprehensive parameterization of clouds 
and turbulence

● Convergence slower than 1st-order in E3SM
● Investigation still in early stage

● Currently using single-column 
configuration to help detangle process 
interactions and pinpoint issues

○ A significant bug in the single-column 
model was identified and fixed

○ Pathological behavior not obvious at 
default time step but prominent at 
smaller step sizes

○ Bug fix does not affect global 
simulation, nevertheless demonstrates 
the value of convergence testing as a 
good verification tool

Before bug fix

After bug fix

Time-stepping error and self-
convergence rate in single-column model

Evolution of eddy kinetic energy, ∆t = 1800 s

Before bug fix After bug fix

Evolution of eddy kinetic energy, ∆t = 1 s

Before bug fix After bug fix



Exploring Stochastic Modeling
Background:
● Sub-grid process are usually fast
● Under-resolved fast processes can appear as noise in solution and affect 

convergence (Hodyss et al., 2013, Mon. Wea. Rev.)

Goal: Represent the effect of fast processes without explicitly resolving them

Progress:
● Configured an advection-diffusion model with 

a spectrum of state-dependent fast forcing
● Demonstrated use of Ito correction to restore 

convergence for white forcing spectra
● Generalized Ito correction for red spectra; 

improved solution convergence and accuracy
● Started to configure more complex and 

realistic test problems 

Time-stepping Error in 
Advection-Diffusion Model with a 

Red Spectrum of Fast Forcing



BER-ASCR Partnership



How We Work Together

● A very integrated project by design
● Tasks are split but also dependent on each other

● Frequent in-depth discussions by teleconferences and on Confluence
● Overcome barriers between two disciplines through team tutorials

○ A task by itself in proposal, 11 tutorials delivered to date
○ Explanation of key concepts/methods and common practices on either side
○ Allow for basic questions and free discussion during and after each tutorial 
○ All slides and recordings placed on Confluence for future reference 

● Team members learning and using methods/tools from the other side, e.g.
○ Math people running and revising E3SM
○ Atmosphere modelers doing derivations 

● Language barrier is still a challenge. Additional tutorials and focused 
discussions are planned to address that



Lessons Learned

● Math people can go deep in to a physics problem…
…but only when sufficient documentation is provided
What we mean by “sufficient”

○ Clear explanation of the physical concept
○ Detailed description of the discretization
○ All assumptions (continuous and discrete) explained
○ All practicalities (clipping, limiters, safeguard parameters) documented

● A culture of verification is lacking in the parameterization development
○ Examples that atmospheric physicists can relate to are needed to help 

establish the culture
○ It is important to distinguish the first principles, the closures used, and the 

numerical methods applied
■ Clarifies the goal of verification
■ Avoids the undesirable situation of numerical methods becoming part of 

the closure.


