Assessing and Improving the Numerical Solution of Atmospheric Physics in E3SM

Hui Wan1 (PI), Carol Woodward2 (Co-lead), Jack Reeves Eyre3, David Gardner2, Huan Lei1, Vince Larson4, Phil Rasch1, Lance Rayborn1, Balwinder Singh1, Jeremy Sousa3, Panos Stinis1, Nicolas Strike4, Chris Vogl2, Xubin Zeng3, and Shixuan Zhang1

1PNNL, 2LLNL, 3UA, 4UWM

SciDAC PI Meeting, July 2018
The Challenge

- Poor time-step convergence in EAMv1 and several predecessors
- Accuracy contrast between full-model and dynamical-core-only results

Implications
- Poor convergence → code is not doing what it is supposed to do
- Strong time-step sensitivity → change in step size can lead to physically significant changes in model climate
The Challenge, cont’d

- Poor time-step convergence in EAMv1 and several predecessors
- Accuracy contrast between full-model and dynamical-core-only results

Implications
- Poor convergence ➔ code is not doing what it is supposed to do
- Strong time-step sensitivity ➔ change in step size can lead to physically significant changes in model climate

- Atmospheric physics parameterizations
 - Traditional focus on conceptualization of physical understanding
 - Practical motivations to use long step sizes
 - Unit testing and verification are rarely done
Objectives

- Understand causes of poor convergence
- Develop alternative time integration methods to improve solution convergence and accuracy

Our Approach

- Use short ensemble tests to assess solution convergence
- Use a hierarchy of simplified model configurations/formulations to pinpoint problematic model components and code pieces
- Conduct formal mathematical analysis on model formulation and discretization error
- Develop alternative time integration methods using theories of deterministic and stochastic differential equations.
Highlights of First Results
A (not-so-)Simple Cloud Model

- E3SM’s dynamical core + cloud formation through large-scale condensation
- Simplified model formulation
 - Facilitates math-climate collaboration
 - Captures essence of commonly used assumptions

Progress
- Restored 1st-order convergence
- Demonstrated loss of convergence due to suboptimal choices made for
 - Model’s continuous formulation
 - Physics-dynamics coupling (splitting)
 - Time stepping within physics

Key message to atmosphere modelers:
- Proper convergence is achievable and impactful (see figure)
A (not-so-)Simple Cloud Model, cont’d

- **Formal error analysis**
 - Assuming a two-process integration scheme with/without **sequential splitting** and **finite difference approximations**

\[|e_n| \leq |\hat{e}_0|e^{(t_f-t_0)K} + \frac{e^{(t_f-t_0)K}}{2K} \left[\|y''\|_\infty + \|f''\|_\infty + 2Kf_v\|DF\|_\infty + 2K_D\|f_uF\|_\infty + 2\|D^2f_{yu}\|_\infty \right] \Delta t \]

 - Confirmed the expected rate of convergence (**1st-order**)
 - Clarified the necessary conditions for achieving such a rate
 - Verified failure of model to meet necessary conditions

- **Revised closure**
 - Avoids the singularity that caused problem in the original model
 - Shows good convergence
 - Is less sensitive to unphysical features in initial condition
E3SM’s Cloud Parameterization — CLUCCB

- Comprehensive parameterization of clouds and turbulence
- Convergence slower than 1st-order in E3SM
- Investigation still in early stage

- Currently using single-column configuration to help detangle process interactions and pinpoint issues
 - A significant bug in the single-column model was identified and fixed
 - Pathological behavior not obvious at default time step but prominent at smaller step sizes
 - Bug fix does not affect global simulation, nevertheless demonstrates the value of convergence testing as a good verification tool
Exploring Stochastic Modeling

Background:
- Sub-grid process are usually fast
- Under-resolved fast processes can appear as noise in solution and affect convergence (Hodyss et al., 2013, Mon. Wea. Rev.)

Goal: Represent the effect of fast processes without explicitly resolving them

Progress:
- Configured an advection-diffusion model with a spectrum of state-dependent fast forcing
- Demonstrated use of Ito correction to restore convergence for white forcing spectra
- Generalized Ito correction for red spectra; improved solution convergence and accuracy
- Started to configure more complex and realistic test problems

Time-stepping Error in Advection-Diffusion Model with a Red Spectrum of Fast Forcing
BER-ASCR Partnership
How We Work Together

- A very integrated project by design
- Tasks are split but also dependent on each other

- **Frequent in-depth discussions** by teleconferences and on Confluence
- **Overcome barriers between two disciplines through team tutorials**
 - A task by itself in proposal, 11 tutorials delivered to date
 - Explanation of key concepts/methods and common practices on either side
 - Allow for basic questions and free discussion during and after each tutorial
 - All slides and recordings placed on Confluence for future reference

- Team members learning and using methods/tools from the other side, e.g.
 - Math people running and revising E3SM
 - Atmosphere modelers doing derivations

- **Language barrier** is still a challenge. Additional tutorials and focused discussions are planned to address that
Lessons Learned

● Math people can go deep in to a physics problem…
 …but only when sufficient documentation is provided

What we mean by “sufficient”
 ○ Clear explanation of the physical concept
 ○ Detailed description of the discretization
 ○ All assumptions (continuous and discrete) explained
 ○ All practicalities (clipping, limiters, safeguard parameters) documented

● A culture of verification is lacking in the parameterization development
 ○ Examples that atmospheric physicists can relate to are needed to help establish the culture
 ○ It is important to distinguish the first principles, the closures used, and the numerical methods applied
 ■ Clarifies the goal of verification
 ■ Avoids the undesirable situation of numerical methods becoming part of the closure.