Coupling Approaches for Next Generation Architectures (CANGA)

CANGA Team Members:

P Jones, P Bochev, R Jacob, S Painter, P Ullrich, X Jaio, Z Liu,
E Constantinescu, E Coon, I Demeshko, J Guerra, H Guo, P Kuberry, V Mahadevan,
T Peterka, K Peterson, J Pietarila-Graham, M Raj, D Ridzal, D Ringo, R Ross, N Trask, H Zhang
CANGA Goals

• Highly performant, accurate and robust coupling strategies for a new E3SM
• PIGLET: Prototype Integration of Global models using Legion Execution of Tasks
 • Replace hub/spoke, monolithic components
 • Asynchronous Many-Task Model
 • Exposes more parallelism
 • Better load balancing
 • Fault tolerance
 • Manage complexity
 • Enable process coupling at proper time, spatial scales
CANGA Goals

• Upgrade coupling algorithms
 • Remapping Online-Offline (ROO)
 • Non-convex cells
 • On-line adaptive remapping
 • Vector and property-preserving
 • Meshfree (agnostic to staggering location)
 • Remap test suite

• Time InteGration for Greater E3SM Robustness (TIGGER)
 • Replace ad-hoc time-lagging and instability
 • Address multiple space, timescales
 • Integrate into task-based coupler

• Applications, mini-apps
 • Simpler coupled systems to analyze, evaluate
Task Parallelism with Legion and FleCSI

- Legion
 - Stanford/LANL/Nvidia
 - Logical regions intersect field/index space
 - Fast runtime analyzes dependencies (DAG) and schedules tasks
- FleCSI: C++ framework designed for multi-physics apps
 - Run-time abstraction layer (Legion, Charm++, HPX, MPI)
 - Control, execution and data models
Task-parallel implementation approach

- **Top-down**
 - Reproduce current coupling
 - Currently have Regent prototype
 - Converting to FleCSI
 - Not enough parallelism
- **Bottom-up**
 - Begin to create task-based components
 - Ocean/ice (MPAS)
 - Large component – prototype interfaces
 - Land Model
 - Ideal component w/ many tasks that have high space and time heterogeneity
 - Extract in-situ analysis (RAPIDS)
 - Lagrangian particle tracking
Field remapping

- Current coupler
 - Conservative, bilinear, others
 - Static, linear, convex cells
- CANGA-ROO
 - Irregular meshes (offline, static)
 - Adaptive on-line
 - Changing mesh/boundary, adjust order
 - Meshless
 - Support field staggering
 - Vector fields
 - Property-preserving
 - Constrained optimization
 - Test framework
 - Analytic fields derived from observation
 - Spherical harmonic truncated expansion

Optimization+meshfree remap: treating DoF as scattered data allows to circumvent complications of non-coincident interfaces.
Time integration of coupled systems

• Current coupling
 • Explicit integration based on flux/field exchange
 • Time-lagged or time-averaged fields to enable concurrent execution and ease of interface
 • Effectively a sub-cycling approach: no reason why it shouldn’t [not] introduce instabilities

• New approaches to advance integrated system
 • Consistent schemes with no/minimal iteration
 • Example: Lagrangian multiplier/dual Schur complement approaches
 • Still solve independently in each subdomain, estimates of flux/BC info

• Shift to multiple process timescales in task-parallel system
Simpler model hierarchy

- Capture enough complexity but no more
 - Perform stability analysis of integrated coupled system
 - Explore impact/feasibility of new time integration algorithms

- Hierarchy
 - Coupled transport (advection-diffusion) on two domains
 - Linearized Navier-Stokes
 - Q-GCM: quasi-geostrophic
 - All include field remapping

- Simple python coupler
 - Replaced by task-based coupler
Task–based Models
P. Jones (LANL)

Coupler Prototype
J. Graham, P. Jones (LANL)

Land Model
E. Coon, S. Painter (ORNL)

Ocean, Ice
I. Demeshko, PD, P. Jones (LANL)

Legion Support
I. Demeshko (LANL)

In Situ analysis
T. Peterka, H. Guo (ANL)

Remapping (ROO)
P. Ullrich (UC-Davis)

TempestRemap Extensions
P. Ullrich (UC-Davis), V Mahadevan (ANL)

Property-preserving and meshless
P. Bochev, R. Pawlowski, K. Peterson, P. Kuberry (SNL)

Adaptive Remap
X. Jiao, Stony Brook

Applications and reduced complexity models
R. Jacob, PD (ANL)

Reduced complexity models
R. Jacob, PD (ANL)

Time integration
P. Bochev, K. Peterson, D. Ridzal (SNL)

Time Integration
H. Zhang (ANL)

ASC funded

BER funded

Time Integration and Applications
R. Jacob (ANL), P. Bochev (SNL)

Performant accurate, robust AMT coupled system

Ocean, Ice
I. Demeshko, PD, P. Jones (LANL)

Land Model
E. Coon, S. Painter (ORNL)

Time Integration
H. Zhang (ANL)
Challenges, potential SciDAC links

• Task-parallel strategies
 • Many packages focused more on standard domain partitioning
 • Everyone wants control of data layout
 • Still need to optimize for node-level memory, core features (platform ready)
 • In-situ analysis, I/O as additional task parallelism

• Remapping
 • Optimized mesh and meshless tools: searching, geometry, partitioning/ordering
 • Property preservation, higher-order

• Time integration
 • Algorithms, approaches for less tightly coupled systems and with minimal iteration