

SciDAC PI Meeting, July 23-24, 2018

Partnership Center for High-fidelity Boundary Plasma Simulation (HBPS)

C.S. Chang¹,

- S. Parker², N. Ferraro¹, M. Greenwald³, G. Hammett¹, S. Ku¹,
- L. Chacon⁴, M. Adams⁵, C. Hauck⁶, J. Hittinger/L. Ricketson⁷, R. Moser⁸, M. Shephard⁹
- S. Klasky⁶, J. Choi⁶, E. Dazevedo⁶, W. Hoffman¹⁰, P. Worley¹¹

and the HBPS Team

¹PPPL, ²U. Colorado, ³MIT, ⁴LANL, ⁵LBNL, ⁶ORNL, ⁷LLNL, ⁸U. Texas, ⁹RPI, ¹⁰Kitware, ¹¹PHWorley

ALCF

- Leadership in HBPS and the project OV
- The XGC gyrokinetic code
- Example scientific discoveries
 - L-H transition
 - Divertor Heat-Flux Width
- Enabling Techonolgies
 - Performance optimization
 - Data management
 - Applied mathematics
- Integration with other Fusion SciDAC codes for WDM
- Summary

*Funding provided by US DOE*Computational resources provided by OLCF, ALCF and NERSC

Leadership in HBPS

Center for High-fidelity Boundary Plasma Simulation

(High-fidelity E&M gyrokinetic simulation of the global BD plasma)

*DEGAS2 is coupled into XGC as a subroutine.

- Leadership in HBPS and the project OV
- The XGC gyrokinetic code
- Example scientific discoveries
 - L-H transition
 - Divertor Heat-Flux Width
- Enabling Techonolgies
 - Performance optimization
 - Data management
 - Applied mathematics
- Integration with other Fusion SciDAC codes for WDM
- Summary

The XGC Gyrokinetic Code

- Particle-in-Cell, with added continuum technology
- In contact with material wall
 - Far-from-equilibrium (non-Maxwellian)
 - Neutral particles
- Magnetic X-point and separatrix (q→∞)
 - X-point orbit loss from pedestal
- Multi-scale, multiphysics in space-time space
- Unstructured triangular mesh
- PETSc (only ~2% of total computing time)
- Large simulation-size (≥10k particles per gridvertex) per time-step
- Total-f XGC has been developed to study this kind of complicated plasma
- Most of the production runs are on ~90% Titan, ~50% Theta, and ~50% Cori.
- XGC is not only a SciDAC code, but also in all three existing exa- or pre-exa programs (CAAR, Aurora-ESP, NESAP), ECP, and INCITE

In the core plasma, f evolves slowly

For this argument, let's use the drift kinetic equation for simplicity $\partial f/\partial t + (\mathbf{v}_{||} + \mathbf{v}_{d}) \cdot \nabla f + (e/m)E_{||} v_{||} \partial f/\partial w = C(f, f) + Sources/Sinks.$

In near-thermal equilibrium, take the "transport ordering" (= diffusive ordering): $\partial f/\partial t = O(\delta^2), S = O(\delta^2), with \delta << 1$

- Let $f=f_0+\delta f$, with $\delta f/f_0=O(\delta)$, $\delta <<1$, $v_d/v_{||} = O(\delta)$, $E_{||}/m = O(\delta \text{ or } \delta^2)$
- $O(\delta^0): \quad v_{||} \cdot \nabla f_0 = C(f_0, f_0) \rightarrow f_0 = f_M: \text{H-theorem}$
- $O(\delta^{1}): \quad \partial \delta f / \partial t + v_{||} \cdot \nabla \delta f + v_{d} \cdot \nabla f_{0} + (e/m) E_{||} v_{||} \partial f_{0} / \partial w = C(\delta f)$
 - ♦ Perturbative kinetic theories then yield transport coefficients = $O(\delta^2)$
 - ♦ In this case, fluid transport equations ($f_o \rightarrow n, T$) can be used with analytic or delta-f kinetic closures
- → δf-GK simulation is cheaper per physics time (small computers), but equilbrates on a slow time scale $O(\delta^1 \omega_{bi})^{-1} \sim ms$: Core GK simulation time scale

A meaningful time evolution of f_0 can only be obtained in a long "transport-time" scale $O(\delta^2 \omega_{bi})^{-1}$: Not yet reachable by GK simulation; Multiscale time integration is needed.

In edge, f equilibrates in zeroth-order time-scale

■ Ion radial orbit excursion width ~ pedestal & scrape-off layer width; unconfined orbits with neutral recycling → Non-Maxwellian

All terms can be large: ~ either $O(\omega_{bi})$ or $O(v_C)$

- $\mathbf{v}_{||} \cdot \nabla f \sim \mathbf{v}_{d} \cdot \nabla f \sim C(f, f) \sim eE_{||} v_{||} / m \partial f / \partial w \sim O(\omega_{bi}) \sim 0.05 \text{ ms in DIII-D}$
- *f* equilibrates very fast: $\partial f/\partial t + (\mathbf{v}_{||} + \mathbf{v}_{d}) \cdot \nabla f$ (e/m) + $E_{||}v_{||}\partial f/\partial w = C(f, f) + S$
- Fast-evolving nonthermal kinetic system
 - Fluid equations (with closure ordering) could give a long time scale.

Edge turbulence around the separatrix saturates before the central core turbulence has even started to form

Ideal for extreme scale computing: big physics in short physics-time (small number of time steps)

- Leadership in HBPS and the project OV
- The XGC gyrokinetic code

• Example scientific discoveries

- L-H transition
- Divertor Heat-Flux Width
- Enabling Techonolgies
 - Performance optimization
 - Data management
 - Applied mathematics
- Integration with other Fusion SciDAC codes for WDM
- Summary

Gyrokinetic L-H bifurcation study, using a low-beta C-Mod L-mode plasma in XGC1*,#

Plasma input condition

- C-Mod #1140613017 in L-mode, single-null (P_{LH}~1-1.5MW)
- $\beta_e \approx 0.01\% < m_e/m_i$ in the bifurcation layer
- Ion magnetic-drift direction was flipped toward the divertor in the first study (favorable direction), then flipped back in the second study.

Simulations include the most important multiscale physics

- Neoclassical kinetic physics
- Nonlinear electrostatic turbulence
- ITG, TEM, Resistive ballooning, Kelvin-Helmholtz, other drift waves
- Neutral particle recycling with CX and ionization crossections
- Realistic diverted geometry

*Chang, Invited IAEA-FEC2016, PRL2018, and #Ku, Invited APS-DPP2017 (PoP2018, cover), Invited IAEA-FEC2018

(EM correction to the present result is left for a near-future work.)

Input: an L-mode plasma from C-Mod (beta~0.01%)

Edge temperature increases from heat accumulation

Gyrokinetic observation of the L-H bifurcation in a C-Mod model plasma

- 1. At t~0.175-0.21ms, lower frequency turbulence decays and higher frequency turbulence appears: through conservative **Reynolds work** via eddie tilting-absorption.
- At t>0.21ms, suppression of all-frequency turbulence follows, with higher frequency part disappearing: through dissipative ExB shearing w/o Reynolds force.

When the magnetic drift is changed back to the unfavorable direction, more interesting physics have been discovered.

1. GAM activity is stronger in the edge bifurcation layer $(0.96 < \Psi_N < 0.98)^*$

*Beginning to be observed experimentally [Czigler PRL2017]

2. Quasi-coherent modes appear even in the electrostatic simulation (but appears not to last long \rightarrow EM needed?)

- Longer time simulation and EM needed to get to the bottom of
- the QCM physics:
- Can be enabled by the 200PF Summit computer, soon.

Larger HPCs and more enabling technologies are needed for the first-principles-based prediction of the L-H bifurcation efficiency in ITER and fusion reactors

- Will the weak neoclassical effect due to the small ρ_i/a [1] in ITER hinder the second (dissipative) stage of the L-H bifurcation process?
 - Can the X-point orbit-loss effect help strengthen the mean ExB shearing and help the L-H transtion and the H-mode pedestal formation?
 - Is the planned external heating power strong enough to induce the needed L-H transition in ITER?
- Can the edge GAMs be used to control the L-H transition when needed?
- Can we utilize the I-mode in the future fusion reactor operation?
- How important is the EM effect in the L-H bifurcation dynamics?
- Longer physics-time simulation (for pedestal buildup) and/or higher flop-rate simulation (EM and ITER) are needed.
- Help needed from enabling technology: algorithm optimization, error reduction, performance enhancement, I/O improvement, on-memory data analysis and reduction, fault resilience, load balancing, machine learning, platform portability, UQ for extreme-scale simulation ...

[1] Noticed in recent publications by Kotschenreuther-Hatch, and Chang

- Leadership in HBPS and the project OV
- The XGC gyrokinetic code

• Example scientific discoveries

- L-H transition
- Divertor Heat-Flux Width
- Enabling Techonolgies
 - Performance optimization
 - Data management
 - Applied mathematics
- Integration with other Fusion SciDAC codes for WDM
- Summary

GK simulation of Divertor heat-flux width: Validation on present devices and prediction for ITER

- Discharges are selected for wide distribution of B_{pol,OM}.
 Experimental eqdsk data are imported into XGC.

Shot	Time (ms)	$\mathbf{B}_{\mathbf{T}}(\mathbf{T})$	$I_P(MA)$	$\mathbf{B}_{\mathrm{pol},\mathrm{OM}}(\mathbf{T})$
NSTX 132368	360	0.4	0.7	0.20
DIII-D 144977	3103	2.1	1.0	0.30
DIII-D 144981	3175	2.1	1.5	0.42
C-Mod 1100223026	1091	5.4	0.5	0.50
C-Mod 1100223012	1149	5.4	0.8	0.67
C-Mod 1100212023	1236	5.4	0.9	0.81
JET 79692		3.56	4.5	0.89

- The XGC-predicted divertor heat-flux width λ_q has been well-validated against various existing tokamak data.
- However, XGC predicts about **6X wider** λ_q for ITER than the regression value by Eich et al.: Why?
- Edge turbulence is **blob type** in the present tokamaks, but **streamer type** in the full-current ITER.
- To check if the enhanced λ_q in the full-current ITER is from the "absolute size effect" or from the "ρ_i/a effect," a reduced-current "first-phase" ITER has been simulated → λ_q agrees with the present tokamaks → ρ_i/a effect.

- The "absolute size effect" is related to the parallel physics and the neutral particle transport
- The "B_{pol} effect" is mostly from the perpendicular physics

Need UQ/ML research to maximize divertor heat-flux width

- Sensitivity to B_{pol} has been well-known from experimental data
- Sensitivity to ρ_i/a has been discovered in our XGC simulation
- New: sensitivity to plasma shape and radiative cooling seen in XGC
- UQ/ML on large-scale simulation: Need a multi-fidelity method

Experimental data points, from an older version Λ_{a} [mm] (exp.) EFIT, corresponding to XGC1 simulations XGC1 MAST DIII-D O NSTX C-Mod 6 ITER→⊅ ★ C-Mod NSTX JET AUG 5 ITER ▲ DIII-D JET 3 NSTX-U, high triangularity with divertor cooling 2 R²=0.86 0 0.2 0.4 0.8 1.0 1.2 0.6 B_{pol,MP} [T]

NSTX-U plasma shows sensitivity of λ_q to plasma shaping and divertor cooling.

Maximize $\lambda_q \rightarrow$ huge impact on ITER operation and success

Evidence for an edge physics bifurcation between the higer and lower ρ_i /a values.

In all the higher p_i/a tokamaks, including low-current ITER, edge tubulence across the separatrix is blob type and the ExB shearing rate is high. In the high-current ITER, the turbulence is streamer type and the ExB shearing rate is low.

A careful study will be performed in the near future: needs large HPC time.

Unlike the blobby turbulence, the full-current ITER containes a strong non-adiabatic electron response across the magnetic separatrix,

as evidenced by a large phase difference between density and potential fluctuations ($\geq \pi/2$) and a strong de-correlation between their amplitudes.

- Leadership in HBPS and the project OV
- The XGC gyrokinetic code
- Example scientific discoveries
 - L-H transition
 - Divertor Heat-Flux Width
- Enabling Techonolgies
 - Performance optimization
 - Data management
 - Applied mathematics
- Integration with other Fusion SciDAC codes for WDM
- Summary

XGC Scales well on the new #1 Summit [Worley, D'Azevedo, ...]

- XGC has been scaling well to the maximal Titan, Cori and Theta.
- CAAR project: XGC also scales well on the new world #1 Summit to the maximal available # nodes (2,048, near 50% capacity).
- Using a **present production** case (underusing the GPU capability) on 2048 Summit nodes, XGC shows 11.3x speedup on GPU+CPU from CPU only.

The production XGC is 3.8x faster than Titan on 2,048 Summit nodes, when matching #nodes to contain the same #GPUs.

(Theoretical ratio is \approx 5)

We will continue the scalability study to the full Summit machine and execute our early science study on Summit.

23

HBPS Data Management: I/O speed became a non-issue on all the modern major HPCs

- Extensive study of writing checkpoint-Restart data (weak scaling) and physics data (strong scaling) using ADIOS on Summit, Cori, Theta and TSUBAME3 shows
 - XGC's write time using NVRAM (Burst Buffers) are reduced to a few seconds on all major platforms → Not an issue.
- I/O time changes from 200 GB/s (Titan, Luster) to
 - 400 GB/s on Cori NVRAM
 - 300 GB/s (32 nodes on Summit-dev NVRAM)
 EST: to over 50 TB/s on Summit NVRAM
 - 3 TB/s on Theta NVRAM
 - 90 GB/s on TSUBAME-64 nodes NVRAM

Tools from RAPIDs are used for real-time on-memory data analysis/filtering, reduction and visualization (see poster)

- XGC physics data is becoming too big for the file system.
- Realtime, on-memory machine-learning tools are to be used, in collaboration with RAPIDS and FASTMath
 - Fusion SciDAC ML Workshop held at PPPL, June 6-7, 2018

Applied Math is another central theme in HBPS (See poster)

- Solvers, various PIC algorithms, UQ, meshing, and their interactions
- Present focus is on a few game-changing algorithms
 - Fully implicit, kinetic EM algorithm has been successfully implemented (Chacon): The notorious "cancellation issue" not seen at the longest wavelengths.
 - ML to optimize pre-conditioner: in collaboration with FASTMath and RAPIDS
 - Improvement of DG algorithm for Gkeyll (Hauck)
 - Particle compression and resampling, ML for PDF reconstruction (Carey, Chacon)
 - Parallel Unstructured Mesh PIC (PUMIpic): particle migration and load balancing with minimal data movement (Shephard's talk)
 - Multifidelity Monte Carlo UQ for extreme-scale PIC codes (Moser)

Top: Dispersion relation for low-wavenumber Alfven modes, demonstrating the absence of cancellation issues. Right: Snapshots of electrostatic potential and electron density.

- Leadership in HBPS and the project OV
- The XGC gyrokinetic code
- Example scientific discoveries
 - L-H transition
 - Divertor Heat-Flux Width
- Enabling Techonolgies
 - Performance optimization
 - Data management
 - Applied mathematics

• Integration with other Fusion SciDAC codes for WDM

• Summary

Integration with other Fusion SciDAC codes for WDM

- HBPS will produce a boundary plasma module for **WDM**
- HBPS plasma module need to interact with the material module from PSI-2
 - HBPS is using hPIC 6D Debye sheath code to provide the ion angle-energy distribution to PSI-2 material module [D. Curreli]
 - HBPS module will in-return accept the recycled and sputtered neutral particles
 - RAPIDS and FASTMath technologies will be used.
- HBPS module needs to couple with the **energetic particle and RF modules**
 - XGC is a total-f code that can handle energetic and non-Maxwellian particles
 - We are generalizing the Fokker-Planck solvers to include energetic particles [Adams, Chacon]

Summary

- HBPS is making scientific discoveries that would not have been possible without the SciDAC framework and US Leadership Class Computers
 - Invited Talks at major scientific conferences, including APS-DPP2017, Sherwood2017, IAEA-FEC 2016, and IAEA-FEC 2018
 - Cover story on 2018 Physics of Plasmas
 - Editor's pick by Physics of Plasmas
 - 1 Physical Review Letter 2017
- XGC is in good standing for the WDM integration
- XGC is in all three Exascale or pre-exascale programs
 - Argon-ESP, NESAP, and CAAR
 - Applied for Summit ESP
 - Scales well in all the US leadership class computers, including Summit to the maximal available # nodes (almost half of the full Summit #nodes)
- XGC is in the INCITE program (on Titan and Theta in 2018)
- The existing strong collaboration with RAPIDS and FASTMath is exptected to grow even further.
 - Collaboration in Machine Learning is being initiated
- HBPS.pppl.gov

SciDAC Fusion Machine-Learning Workshop 2018

Princeton Plasma Physics Laboratory, June 6-7, 2018

