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« The XGC gyrokinetic code
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— Divertor Heat-Flux Width
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- Applied mathematics
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Center for High-fidelity Boundary Plasma Simulation
(High-fidelity E&M gyrokinetic simulation of the global BD plasma)

Exa-scale BD module

ASCR’s Enabling Techology
XGC + DEGAS2" + M3D-C1* + hPIC* "
L-H transition =
Pedestal shape O Q
*ELM control and integration with disruption E&M = =
Divertor heat-flux width > 8 2
Impurity effect e
#Sheath physics and integration with PMI 0N o
Vaidation 20| | —
O
Production component / i =
ol
80
GEM + GENE LL
E&M turbulence Continuum GK codes
in closed B « Gkyell
Verification & instruction Developmental component
component

"‘DEGAS?2 is coupled into XGC as a subroutine.
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The XGC Gyrokinetic Code

Particle-in-Cell, with added continuum technology
In contact with material wall

- Far-from-equilibrium (non-Maxwellian)

- Neutral particles

Magnetic X-point and separatrix (q=2>«)
— X-point orbit loss from pedestal

Multi-scale, multiphysics in space-time space
Unstructured triangular mesh

PETSc (only ~2% of total computing time)
Large simulation-size (210k particles per grid-
vertex) per time-step

Total-f XGC has been developed to study this kind
of complicated plasma

Most of the production runs are on ~90% Titan,
~50% Theta, and ~50% Cori.

XGC is not only a SciDAC code, but also in all
three existing exa- or pre-exa programs
(CAAR, Aurora-ESP, NESAP), ECP, and INCITE

XGC1

Core plasma
(hot, collisionless)

Wall
| boundary

:  Separatrix
i (white line)

|

Edge region
(large gradients)

“Scrape-off layer
(cold, collisional plasma
neutral atomic physics)

X-point (poloidal

Divertor §¢ i .
magnetic field vanishes)

region



In the core plasma, f evolves slowly

For this argument, let’s use the drift kinetic equation for simplicity
oflot+(v +vy)- V+ (e/m)E, v, dflow = C(f,f) + Sources/Sinks.

In near-thermal equilibrium, take the “transport ordering” (= diffusive ordering):
of/ot=0(6%), S=0(6?), with o<<1
» Let f=f+0f, with &f / f,=0(0), 6 <<1, v4/v; = O(0), E;/m = O(b or &%)

O(8%): v - Vi, = C(fy.f) 2 fo=fy : H-theorem
O(6'): odflot + v, Vot + vy - Vi, + (e/m) Ev, df,/ow = C(5)

<> Perturbative kinetic theories then yield transport coefficients =0O(62)

< In this case, fluid transport equations (f,= n,T) can be used with analytic or
delta-f kinetic closures

- Of-GK simulation is cheaper per physics time (small computers), but
equilbrates on a slow time scale O(6'w,;)* ~ ms: Core GK simulation time

scale

A meaningful time evolution of f; can only be obtained in along
“transport-time” scale O(6%wy;)*: Not yet reachable by GK simulation;
Multiscale time integration is needed.



In edge, f equilibrates in zeroth-order time-scale

B [on radial orbit excursion width ~ pedestal & scrape-off layer width; unconfined
orbits with neutral recycling - Non-Maxwellian

All terms can be large: ~ either O(w,,;) or O(v)
 f equilibrates very fast: of/ot + (v, +vq)- Vf (e/m) + E,v, 0 flow = C(f,f)+S

B Fast-evolving nonthermal kinetic system
* Fluid equations (with closure
ordering) could give a long time
scale.

Edge turbulence around
the separatrix saturates
before the central core
turbulence has even
started to form

Ideal for extreme scale computing:
big physics in short physics-time
(small number of time steps)
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Gyrokinetic L-H bifurcation study, using a low-beta
C-Mod L-mode plasma in XGC1*/#

Plasma input condition
e C-Mod #1140613017 in L-mode, single-null (P, ,~1-1.5MW)
* B.=0.01% < m/m; in the bifurcation layer
* lon magnetic-drift direction was flipped toward the divertor in the first
study (favorable direction), then flipped back in the second study.

Simulations include the most important multiscale physics

* Neoclassical kinetic physics
Nonlinear electrostatic turbulence
ITG, TEM, Resistive ballooning, Kelvin-Helmholtz, other drift waves
Neutral particle recycling with CX and ionization crossections
Realistic diverted geometry

*Chang, Invited IAEA-FEC2016, PRL2018, and
#Ku, Invited APS-DPP2017 (PoP2018, cover), Invited IAEA-FEC2018

(EM correction to the present result is left for a near-future work.)



Input: an L-mode plasma from C-Mod (beta~0.01%)

Edge temperature increases from heat accumulation
800 |
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Gyrokinetic observation of the L-H bifurcation
in a C-Mod model plasma
1. Att~0.175-0.21ms, lower frequency turbulence decays and higher frequency

turbulence appears: through conservative Reynolds work via eddie tilting-
absorption.

2. Att>0.21ms, suppression of all-frequency turbulencéJollows, with higher
frequency part disappearing: through dissipative ExB shearing w/o Reynolds
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When the magnetic drift is changed back to the unfavorable
direction, more interesting physics have been discovered.

1. GAM activity is stronger in the edge bifurcation layer (0.96<¥ <0.98)
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*Beginning to be observed experimentally [Czigler PRL2017]
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2. Quasi-coherent modes appear even in the electrostatic simulation (but
appears not to last long - EM needed?)

Turb amplitude vs. time and v

e QCMs are ringing modes induced
by GAMSs?
N oo * Longer time simulation and EM
200 | needed to get to the bottom of
' the QCM physics:
| — Can be enabled by the 200PF
1.0E-02 Summit computer, soon.
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Larger HPCs and more enabling technologies are needed
for the first-principles-based prediction of the L-H
bifurcation efficiency in ITER and fusion reactors

« Will the weak neoclassical effect due to the small pi/a [1] in ITER hinder the
second (dissipative) stage of the L-H bifurcation process?

- Can the X-point orbit-loss effect help strengthen the mean ExB shearing and
help the L-H transtion and the H-mode pedestal formation?

- Is the planned external heating power strong enough to induce the needed
L-H transition in ITER?
» Can the edge GAMSs be used to control the L-H transition when needed?
e Can we utilize the I-mode in the future fusion reactor operation?
 How important is the EM effect in the L-H bifurcation dynamics?

O Longer physics-time simulation (for pedestal buildup) and/or higher flop-rate
simulation (EM and ITER) are needed.

O Help needed from enabling technology: algorithm optimization, error reduction,
performance enhancement, I/O improvement, on-memory data analysis and
reduction, fault resilience, load balancing, machine learning, platform portability,
UQ for extreme-scale simulation ...

[1] Noticed in recent publications by Kotschenreuther-Hatch, and Chang
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GK simulation of Divertor heat-flux width:Validation
on present devices and prediction for ITER

* Discharges are selected for wide distribution of B, o
« Experimental eqdsk data are imported into XGC.

Shot Time (ms) [ By (T) I (MA) Boorom (1)
NSTX 132368 360 0.4 0.7 0.20
DINI-D 144977 3103 2.1 1.0 0.30

DITI-D 144981 3175 71 15 0.42

~C-Mod 1100223026 | 1091 5.4 05 0.50
C-Mod 1100223012 | 1149 5.4 0.8 0.67
C-Mod 1100212023 | 1236 5.4 0.9 0.81
JET 79692 3.56 45 0.89

e e e '!"‘U’Wrr.h\' >




« The XGC-predicted divertor heat-flux width A, has been well-validated
against various existing tokamak data.
 However, XGC predicts about 6X wider A, for ITER than the regression

value by Eich et al.: Why?

» Edge turbulence is blob type in the present tokamaks, but streamer type

in the full-current ITER.

» To check if the enhanced /\q in the full-current ITER is from the “absolute

size effect” or from the “pi/a effect,” a reduced-current “first-phase” ITER
has been simulated > A, agrees with the present tokamaks - p;/a effect.

« The “absolute size effect” is
related to the parallel physics
and the neutral particle
transport

* The "B, effect” is mostly from
the perpendicular physics

Experimental data points, from an older version
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Need UQ/ML research to maximize divertor heat-flux width

« Sensitivity to B,

has been well-known from experimental data

« Sensitivity to p/a has been discovered in our XGC simulation
* New: sensitivity to plasma shape and radiative cooling seen in XGC
 UQ/ML on large-scale simulation: Need a multi-fidelity method

NSTX-U plasma shows
sensitivity of A, to plasma
shaping and divertor
cooling.

Maximize A, = huge impact
on ITER operation and
success

() Experimental data points, from an older version
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Evidence for an edge physics bifurcation
between the higer and lower p,/a values.

In all the higher p/a tokamaks, including low-current ITER, edge tubulence across
the separatrix is blob type and the ExB shearing rate is high. In the high-current
ITER, the turbulence is streamer type and the ExB shearing rate is low.
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A careful study will be performed in the near future: needs large HPC time.



Unlike the blobby turbulence, the full-current ITER
containes a strong non-adiabatic electron response
across the magnetic separatrix,

as evidenced by a large phase difference between density and potential fluctuations
(211/2) and a strong de-correlation between their amplitudes.

Correlation of On/ngg and 60/T
0.600 0600
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0.575 0.02020 0575
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& 3 ’ 0.01515
0.550 SR = ' 0350
‘2 ) 0.44
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0.525 |
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0.425 ( W -0.02020 04254 066
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XGC Scales well on the new #1 Summit [worley, D’Azevedo, .. ]

« XGC has been scaling well to the maximal Titan, Cori and Theta.

 CAAR project: XGC also scales well on the new world #1 Summit to the maximal
available # nodes (2,048, near 50% capacity).

e Using a present production case (underusing the GPU capability) on 2048
Summit nodes, XGC shows 11.3x speedup on GPU+CPU from CPU only.

XGC1 Performance: Strong scaling on DIlI-D mesh
(13K ions and 13K electrons per mesh cell, with collisions)

Multi-level T
Pa rallelization: 1024 42 CPU cores per node
4-way SMT per core
MPI + OpenMP + 512 | WRARtRpRrmce -
CPU+GPU, no OpenACC —=—
CUDA + OpenACC CPU+GPU, w/OpenACC —s—

256 |-

128

12.3x eff:0.91
64 -
14.3x

i 11.0x

eff:0.76
10.3x

Average Seconds per Timestep

16 |

11.3x |
eff:0.72

| | I

256 512 1024 2048
Compute Nodes 29




The production XGC is 3.8x faster than Titan on 2,048 Summit

nodes, when matching #nodes to contain the same #GPUs.
(Theoretical ratio is = 5)

XGC1 Performance: Strong scaling on DIll-D mesh
(13K ions and 13K electrons per mesh cell, with collisions)

128 -
§' nodes:256
3 64 |
£
- nodes:12288
@
o
) 32 |
e
=
o
o
Q
N
> 161 nran g
> 1 GPU per node nodes:2048
2 CPU+GPU, w/OpenACC —=—

SUMMIT x
8 6 GPUs per node
CPU+GPU, no OpenACC —+—
Ideal - - x-- ; : :
1024 2048 4096 8192 16384
GPUs

We will continue the scalability study to the full Summit machine
and execute our early science study on Summit. 23



HBPS Data Management: F0- strong calig 6 OB, /2.4 Gnods
I/O S p eed b eC a.m e a. n 0 n -I S S u e 0 n 0.80 m Checkpoint-restart-weak-scaling
all the modern major HPCs o
« Extensive study of writing checkpoint-Restart E
data (weak scaling) and physics data (strong
scaling) using ADIOS on Summit, Cori, Theta Tl =N N N .
and TSU BAM E3 ShOWS 4096 8192 16384 32768 65536
— XGC’s write time using NVRAM (Burst XGC1 - Writes - Cori

Buffers) are reduced to a few seconds on all
major platforms - Not an issue.

* /O time changes from 200 GB/s
(Titan, Luster) to

— 400 GB/s on Cori NVRAM

— 300 GB/s (32 nodes on Summit-dev NVRAM) 0 100 200 300 400 500
EST: to over 50 TB/s on Summit NVRAM XGCN;‘/":’G';’ o
— 3 TB/s on Theta NVRAM 200 R

W Checkpoint-Restart -
300 weak scaling

M Read

- L
0 |- L
2 4 16 32

Nodes

— 90 GB/s on TSUBAME-64 nodes NVRAM

Performance (GB/s)



Tools from RAPIDs are used for real-time on-memory data
analysis/filtering, reduction and visualization (see poster)

» XGC physics data is becoming too big for the file system.
* Realtime, on-memory machine-learning tools are to be used, in collaboration
with RAPIDS and FASTMath
- Fusion SciDAC ML Workshop held at PPPL, June 6-7, 2018

Put

In Situ Staging F-total
Get | Analysis

Data Reduction
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Applied Math is another central theme in HBPS (See poster)

» Solvers, various PIC algorithms, UQ, meshing, and their interactions
» Present focus is on a few game-changing algorithms
- Fully implicit, kinetic EM algorithm has been successfully implemented (Chacon):
The notorious “cancellation issue” not seen at the longest wavelengths.
- ML to optimize pre-conditioner: in collaboration with FASTMath and RAPIDS
- Improvement of DG algorithm for Gkeyll (Hauck)
— Particle compression and resampling, ML for PDF reconstruction (Carey, Chacon)
— Parallel Unstructured Mesh PIC (PUMIpic): particle migration and load balancing
with minimal data movement (Shephard’s talk)
- Multifidelity Monte Carlo UQ for extreme-scale PIC codes (Moser)

><1014 ><1014

14 14 .
d

pot
12 Cylinder 12+ Tokamak
10 B=0.05% 1o P=0.05% ' ‘
ok AN
C\J:} 6 NZ} 8 '
4 4
21 3 2 ' [
O = * 0 —
0 0.5 1 15 2 0 05 1 15 '
K ! kind ~1E10]

Top: Dispersion relation for low-wavenumber Alfven modes, demonstrating the absence |
of cancellation issues. Right: Snapshots of electrostatic potential and electron density.
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* Integration with other Fusion SciDAC codes for WDM
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Integration with other Fusion SciDAC codes for WDM

« HBPS will produce a boundary plasma module for WDM

 HBPS plasma module need to interact with the material module from PSI-2

- HBPS is using hPIC 6D Debye sheath code to provide the ion angle-energy
distribution to PSI-2 material module [D. Curreli]

- HBPS module will in-return accept the recycled and sputtered neutral particles
- RAPIDS and FASTMath technologies will be used.

« HBPS module needs to couple with the energetic particle and RF modules
- XGC is a total-f code that can handle energetic and non-Maxwellian particles

- We are generalizing the Fokker-Planck solvers to include energetic particles
[Adams, Chacon]

t = 3.750e-07 s, (i=750/750)

.............................................

. ADIOS """"""""""""""""""""""""""" 500 |

E ; ! 400 |

XGC - Put h 300 L

— ; § 200 |
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~ &= Get 10
------------------------ i e
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Monitaring . Manager Visualization 0 0002 0004 0006 0008 00
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Summary

HBPS is making scientific discoveries that would not have been possible
without the SciDAC framework and US Leadership Class Computers

- Invited Talks at major scientific conferences, including APS-DPP2017,
Sherwood2017, IAEA-FEC 2016, and IAEA-FEC 2018

— Cover story on 2018 Physics of Plasmas
- Editor’s pick by Physics of Plasmas
- 1 Physical Review Letter 2017

XGC is in good standing for the WDM integration

XGC is in all three Exascale or pre-exascale programs

- Argon-ESP, NESAP, and CAAR

- Applied for Summit ESP

- Scales well in all the US leadership class computers, including Summit to
the maximal available # nodes (almost half of the full Summit #nodes)

XGC is in the INCITE program (on Titan and Theta in 2018)

The existing strong collaboration with RAPIDS and FASTMath is
exptected to grow even further.

— Collaboration in Machine Learning is being initiated
HBPS.pppl.gov



SciDAC Fusion Machine-Learning Workshop 2018

Princeton Plasma Physics Laboratory, June 6-7, 2018

E e
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SciDAC Fusion Machine-Learning Workshop 2018

June 6-7 at the Princeton Plasma Physics Laboratory




