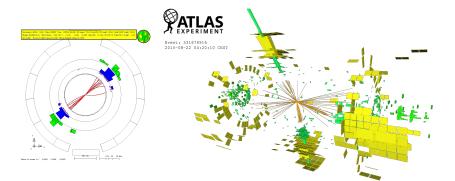
Event Generation on HPC – Status Report


T.Childers¹, S.Höche², P.Hovland¹, S.Kuttimalai², S.Prestel³, H.Schulz³

¹ANL, ²SLAC, ³FNAL

SciDAC PI Meeting Rockville, 7/24/2018

Event generators from 1978 to 2018

[Andersson, Gustafson, Ingelman, Sjöstrand] Phys. Rept. 97(1983)31, [Buckley et al.] arXiv:1101.2599

- ▶ Started with Lund string model for fragmentation \rightarrow Complete description of (2-jet) events in e^+e^- →hadrons
- Experimental situation much more involved today: Multi-jet events, hadronic initial states, pileup,

Event generators in 2018

[Buckley et al.] arXiv:1101.2599

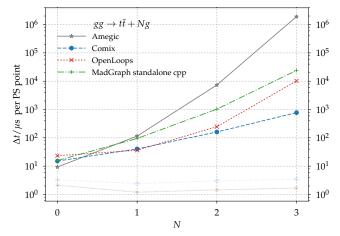
- ► (N)LO Matrix Element (ME) generators BlackHat+Comix, MadGraph5, ...
- Parton showers (PS), mostly based on dipole/antenna picture
- Multiple interaction models possibly interleaved with shower
- Hadronization models string/cluster fragmentation
- Hadron decay packages
- Photon emission generators
 YFS formalism or QED shower

Much of the development focused on precision Requires close interaction of ME & PS generators

Short-distance cross sections

► Computing Feynman graphs gets complicated quickly Example: n gluons → all tree graphs connecting n external points

# of gluons	# of diagrams	# of gluons	# of diagrams
5	25	9	559405
6	220	10	10525900
7	2485	11	224449225
8	34300	12	5348843500


- Must eliminate common subexpressions [Berends, Giele] NPB306(1988)759 Ideally also parallelize the calculation [Gleisberg, SH] arXiv:0808.3674
- ▶ But that is not all: We have multiple parton species (not only gluons)

Process	W^-+0j	W^- +2j	W^- +4j	W ⁻ +6j
Processes (mapped)	1 (1)	18 (42)	88 (324)	280 (1332)
RAM (per process)	< 1MB	1 (0.056) MB	23 (0.26) MB	435 (1.6) MB
Initialization time	< 1s	<1s	33s	51m 52s
Startup time	< 1s	< 1s	< 1s	2s
Integration time	8s	22m 8s	1d 5h	32d 19h
MC uncertainty [%]	0.18	0.25	0.66	1.29

Numbers generated on dual 18-core Intel® Xeon® E5-2699 v3 2.30GHz

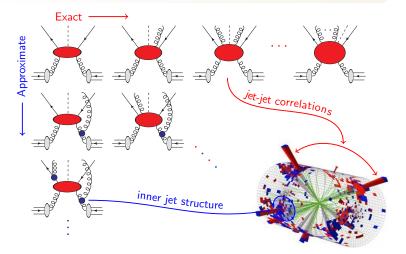
- Integration times cumulative for all MPI ranks
- Initialization to be performed only once, on single CPU
- Startup time common to all MPI ranks for any subsequent run

Short-distance cross sections

- Bad computational strategy costs orders of magnitude in performance (This is effectively comparing Feynman diagrams to recursion relations)
- Most challenging calculations done with best technology (Comix) but still sacrificing speed for ability to maintain code base (Consider that development mostly done by graduate students)

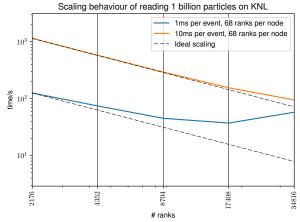
Short-distance cross sections

Constructed 100-line example code showing basic algorithms


 \rightarrow 850 lines total needed to perform realistic scaling test

► Timing in ms/point for one/all partial amplitudes (pypy jit compiler)

# gluons	one	all	# gluons	one	all
5	0.037	0.068	9	0.312	15.199
6	0.066	0.211	10	0.504	79.695
7	0.114	0.773	11	0.703	400.596
8	0.179	3.050	12	1.003	2257.200


 \blacktriangleright Within factor 2 of C++ \rightarrow Basis for discussion with HPC experts

Event processing

- ► Short-distance cross section and QCD evolution linked at higher order in perturbation theory → cannot be simulated entirely independent
- Separation of event generation into hard process and parton shower jobs requires reconstruction of diagram topologies at parton shower stage

Event processing

- Main task is to decouple existing matrix element generators (BlackHat+Comix) from parton shower, write out /read in events in HDF5 format, and enable reconstruction of diagram topologies
- ► Test program ready for benchmark (> plot above) Note: MPI parallelization not yet leveraged (in talks with HDF5 experts) Compare timing to reconstruction: 1ms (W+2j) - 1s (W+6j)

Outlook

Parton-level event generator

- Simplified test program for optimization of algorithms
- Planning on discussion/meeting with experts

Particle-level event processing

- ► Decoupled parton-level event generation from remaining simulation
- ► First scaling tests with simple HDF5 interfaces
- Promising even without full MPI capabilities of HDF5