
Giuseppe Cerati, Boyana Norris
SciDAC-4 PI meeting
July 24, 2018

HEP Event Reconstruction  
with Cutting Edge Computing Architectures

2018/07/24 SciDAC4 PI meeting

HEP Event Reconstruction with Cutting Edge Computing Architectures
• Pilot project, funded for 3 years. Website: http://computing.fnal.gov/hepreco-scidac4/

• Fermilab:
- G. Cerati (PI), M. Wang (staff), A. Hall (postdoc), S. Berkman (postdoc, starting 09/2018)
- expertise in reconstruction algorithms for HEP experiments

• University of Oregon:
- B. Norris (PI), B. Gravelle (grad. student)
- expertise in analysis and optimization for high performance computing

• HEP Areas of interest:
- CMS tracking:

• expand UCSD/Princeton/Cornell “Parallel Kalman Filter” collaboration
• work on optimization (physics+computing) and deployment of the new algorithm

- LArTPC reconstruction:
• brand new effort, build on top of knowledge acquired through the CMS tracking effort

�2

2018/07/24 SciDAC4 PI meeting

Introduction
• P5 panel recommendation: Higgs as a tool for discovery, physics of 𝜈 mass

- HL-LHC, LArTPC program (SBN, DUNE)
• Reconstruction for both LHC and LArTPC experiments is challenging
• Future experiments even more challenging:

- larger sizes or more granular: more detector channels
- higher beam intensities: more data to process

• Reconstruction compute time does not scale well

• Need large speedups in reconstruction to reach  
design detector sensitivity and enable discoveries!

�3

Figure 1​ . Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and uncertainties. The red circle
represents the measurement (a hit). The yellow point on layer N represents the estimated
state (position and direction) at layer N before taking into account information from hits on
that layer. The blue point is the updated state at layer N, taking into account all hits up to and
including layer N. Center: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. Right: Schematic representation of track building. Unlike in track fitting,
the algorithm has many branch points, e.g. when hits are missing on layers or when multiple
hit candidates are encountered on a layer.

Tracking is the single reconstruction step that takes the largest fraction of computing time in
the CMS reconstruction workflow [CMSTkVtx]. As a function of the instantaneous luminosity,
the total computing time grows exponentially, and also the relative fraction of time spent for
tracking increases (Fig. 2).

Figure 2. CPU time per event versus instantaneous luminosity, for both full reconstruction
and the dominant tracking portion.

6

2018/07/24 SciDAC4 PI meeting

The current model
gigantic multi-author sequential C++ code: 

worked great for past discoveries 
but inadequate for future challenges

�4

2018/07/24 SciDAC4 PI meeting

A new model?

exploit different architectures and parallel computing to conquer new territories
�5

2018/07/24 SciDAC4 PI meeting

Project goals
• Accelerate HEP event reconstruction using modern parallel architectures.

• Focus on two areas:
- novel parallel algorithm for charged particle tracking in CMS
- pioneer similar techniques for reconstruction in LArTPC detectors

• Goals of the project are the following:
- Identify key algorithms for physics outcome which are dominant contributions for the

experiments’ reconstruction workflows
- Characterize and re-design the algorithm to make efficient usage of parallelism, both at

data- and instruction-level
- Deploy the new code in the experiments’ framework
- Explore execution on different architectures and platforms

�6

2018/07/24 SciDAC4 PI meeting

CMS tracking prototype
• Collaboration with UCSD/Cornell/Princeton
• Reconstruct trajectories of charged particles through  

thin silicon layers
- image: data with PU~50, HL-LHC will have PU~200

• Kalman filter-based fit or build
- Build is combinatorial search for compatible hits along the track: drives

the increase in processing time
• Inspired by CMS version but with large differences:

- Avoid resolving fine grained geometry structures
- Vectorized using Matriplex: SIMD processing of multiple candidates
- Thread-level parallelization: distribute seeds in TBB tasks

• can handle concurrent processing of multiple events

• Challenges: branching points, low arithmetic intensity
- quick processing of many small objects

�7

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Data structure: Matriplex
“Matrix-major” matrix
representation designed to fill a
vector unit with n matrices
operated on in synch

Use vector-unit width on Xeons
• With or without intrinsics
• Shorter vector sizes w/o intrinsics
• For GPUs, use the same layout with

very large vector width

Interface template common to
Xeon and GPU versions

6

Matriplex

Figure 1​ . Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and uncertainties. The red circle
represents the measurement (a hit). The yellow point on layer N represents the estimated
state (position and direction) at layer N before taking into account information from hits on
that layer. The blue point is the updated state at layer N, taking into account all hits up to and
including layer N. Center: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. Right: Schematic representation of track building. Unlike in track fitting,
the algorithm has many branch points, e.g. when hits are missing on layers or when multiple
hit candidates are encountered on a layer.

Tracking is the single reconstruction step that takes the largest fraction of computing time in
the CMS reconstruction workflow [CMSTkVtx]. As a function of the instantaneous luminosity,
the total computing time grows exponentially, and also the relative fraction of time spent for
tracking increases (Fig. 2).

Figure 2. CPU time per event versus instantaneous luminosity, for both full reconstruction
and the dominant tracking portion.

6

Track	Fit Track	Build

2018/07/24 SciDAC4 PI meeting

Profiling with TAU Commander
• Code profiled with TAU Commander

(sampling) and analyzed with Pandas
- @NERSC Cori, configuration: 1 NUMA domain,

MCDRAM in direct mapped cache mode
- our feedback lead to improvements to TAU

Commander (e.g. TBB support)

• Speedup after first analysis: ~8%
- mostly from improved caching in propagation

• Deeper analysis ongoing
- Overall scaling
- Memory efficiency and scaling
- Correlation between metrics
- Per-function analysis with stall breakdown

• Indications for possible improvements:
- improve vectorization (preparatory functions),  

L3 misses, branch mispredictions

�8

Correlations between
metrics (Spearman) 
for 256 threads

Stall
Cycles

Total
Cycles

Scalar vector ops 86.01% 82.78%

Conditional branches 81.92% 77.70%

L3 misses 81.20% 77.25%

Branch instructions 80.67% 77.00%

Branch mispredictions 79.81% 74.99%

Load/store instructions 79.68% 74.60%

L3 accesses 78.61% 73.99%

L2 total cache misses 77.84% 73.86%

L2 accesses 77.55% 72.79%

Memory acces stalls 77.02% 74.78%

L1 total cache misses 76.43% 71.66%

Unconditional branches 76.31% 71.99%

Vector operations 74.15% 68.52%

TLB data misses 73.86% 68.70%

Computational performance
●  Vectorization (building only) gives about

2 to 3x speedup (AVX, AVX-512)
●  For multi-threading, having multiple

events in flight is crucial!
○  Currently cleaning up “administrative” tasks we

didn’t care much about before, e.g., loading of
hits, seed cleaning.

●  Compared to CMSSW, mkFit is about
10x faster (both single-thread).
○  Intentionally vague as this is work in progress.

○  icc significantly boosts mkFit performance

●  ttbar + 70 PU @ KNL: 115 events / s
@ Skylake Au (32 core): 250 events / s

14

KNL

Least scalable functions: Increase in  
total cycles (from 8 to 256 threads)
MkBuilder::map_seed_hits() 2.6E+06

Hit::Hit() 1.6E+05

Matriplex<float, 1, 1, 8>::operator[](int) 2.1E+04

2018/07/24 SciDAC4 PI meeting

Comparison with Current CMS Version
• Comparison of physics and timing performance with CMS version

- both using standalone tools and CMS validation
- start from same inputs (hits and seeds from first iteration of offline tracking)

• Overall comparable results
- same resolutions, similar efficiencies except for:

• low momentum (pT<0.5 GeV)
• |η|>1.2 (geometry transition from barrel layers to endcap disks)

• Ongoing investigations target efficiency recovery
- testing hit rejection handles used in CMS version and not in prototype

• Timing performance of prototype clearly better than CMS version
- Single threaded time 10-20x faster than CMS on KNL (20x for AVX512)
- Highest event throughput using Skylake Gold: ~250 events/s
- Possible use in High Level Trigger for LHC Run3!

�9

ttbar + 70 PU

●  Efficiency comparable for pt > 0.5 GeV
○  Exploration of endcap inefficiency is ongoing

●  Fake rate is more significant
○  Final cleaning should help

○  Investigate quality criteria

●  Duplicate rate similar to no pileup / muon
case
○  Which means it has the same origin – duplicates

in input seed collection.

○  Post-build cleaning / merging will get this down to
CMSSW levels

12

2018/07/24 SciDAC4 PI meeting

Hit Finding in LArTPC
• Reconstruction in LArTPC neutrino experiments is

challenging due to many possible neutrino topologies,
noise, contamination of cosmic rays
- Takes O(100) s/event in MicroBooNE
- future experiments much bigger and on more intense beams

• Feasibility study for LArTPC reconstruction: hit finding
- MicroBooNE TPC is made of ~8k wires readout at 2 MHz
- Signal from charged particles produces Gaussian pulses
- Hit finding is the process of identifying such pulses and determine

their properties (peak position and width)
• currently takes ~15% of the MicroBooNE reconstruction workflow

- Suitable for parallel processing:  
wires can be processed independently 

�10

Tracy Usher
LArSoft Coordination Meeting 

June 19, 2018

GausHit Finder
Updates

Pulse	height	vs	time	bin

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

Figure 3.​ Layout of a LArTPC experiment (from [UBooNE]).

All planned and running LArTPC experiments at Fermilab benefit of a common software
platform, LArSoft [LArSoft]. LArSoft is intended to include all functions necessary to facilitate
the creation and maintenance of a common software infrastructure for the reconstruction and
simulation of liquid argon based detectors. It is written in C++ and built on the ROOT data
analysis software [Root] and the art analysis framework [Art] supported by the Fermilab
Scientific Computing Division for intensity frontier experiments. LArSoft collects simulation
and reconstruction algorithms and provides a detector-independent visualization tool for
LArTPC experiments. The key elements of the LArSoft code are a set of
experiment-independent “detector interfaces” and data structures that allow algorithms to
retrieve detector properties and to input/output data products in an experiment-agnostic way.
Detector-related information are instead provided by software plugins maintained by each
experiment. Integrating our developments within LArSoft is a crucial step for this project;
clearly it will make our results directly available to all participating experiments, but it will also
expose the new technologies we will use to a wider community, thus helping the formation of
a new software development culture in the field.

Let us now describe the typical reconstruction workflow for LArTPC experiments (Fig. 4)
[Palamara]. The LArTPC technology is based on the continuous digitization and recording of
the signal from each wire of the two (or three) wire planes of the TPC. The purpose of the
reconstruction procedure of ionizing events in a LArTPC is to extract physical information
provided by the wire output signals from the multiple read-out planes, i.e. the energy
deposited by the different particles and the space coordinates where such a deposition has
occurred. All this allows to build a complete 3D and calorimetric picture of the event. The

10

2018/07/24 SciDAC4 PI meeting

Hit finding: first results and next steps
• Replicated implementation in standalone

code for easier testing and optimization:
- Replaced Minuit+ROOT Gaussian fit technique

with local implementation of Levenberg-
Marquardt minimization.

- Results nearly identical in terms of hit
properties but with large speedup (~8x).

• Next steps:
- Hit finding:

• parallelize at wire level
• identify strategy for vectorization
• port improved version into experiments’ codebase

- Identifying next algorithm:
• exploring options upstream (signal processing) or

downstream (pattern recognition) wrt hit finding

�11

offline event reconstruction procedure can be briefly summarized as a series of subsequent
steps:

1. Signal shaping and hit reconstruction: data from each wire is passed through a noise
filter, signal deconvolution, and calibration to translate raw signal pulses to nearly
uniform, unipolar signal pulses on each of the wires. TPC “hits” are identified as
Gaussian-like signals above the baseline readout waveforms, and carry information
on the wire and time of arrival of charge in the detector, as well as an (uncalibrated)
measure of the energy deposited in each hit.

2. Clustering, track and shower reconstruction: hits in each plane of wires are
processed by clustering algorithms which identify hits likely originating from the same
particle. 3D pattern-recognition and tracking algorithms then match these hits and
clusters across the three wire planes in the TPC to identify charged-particle
trajectories (“tracks”), interaction vertices, and showers of electromagnetic particles.

3. Calorimetric reconstruction and Particle Identification: the determination of the
energy release in LAr is performed by charge to energy conversion with correction for
the quenching effect on the ionization charge in LAr and correcting for the charge
loss due to the attachment by electronegative impurities diluted in LAr. Particle
identification is obtained from dE/dx measurement versus range.

Figure 4.​ Typical reconstruction workflow in LArTPC experiments.

MicroBooNE [UBooNE] is the only LArTPC neutrino experiment currently taking data and is
therefore the best reference for state-of-the-art reconstruction algorithms. As of today,
algorithms are not in a crystallized configuration yet, and the MicroBooNE reconstruction
group is in a very active development state, with multiple new solutions being investigated. A
key point to MicroBooNE’s reconstruction effort is that there is no unique way to do
reconstruction: reconstruction algorithms are highly modularized, and alternative algorithms
are used to reconstruct the same objects; the resulting performance depends on the
topology and different analyses make use of products from different algorithms. Algorithms
for shower reconstruction are still in an embryonal development stage [ShowerReco].
Excluding legacy reconstruction algorithms which will be soon deprecated, the typical
reconstruction time in MicroBooNE events is 2-3 minute per event on production machines
at Fermilab. As of today, there is not a single algorithm that is responsible for most of the
reconstruction time; significant contributions come from four algorithms, which we briefly
describe below. Further developments may both decrease (due to optimization) or increase
(due to the introduction of new algorithms) the total processing time.

1. GausHitFinder [HitFinder]: taking as input deconvoluted unipolar wire signal
[Deconv], it finds regions above a given threshold; on each region it performs a
multi-Gaussian fit and extracts the hit time and width.

11

Typical	reconstruction	chain	for	LArTPC experiments

2018/07/24 SciDAC4 PI meeting

Milestones for year 1

• Year 1 milestones completed or on track to be completed!
�12

performance on ​experimental data or realistic simulations and test their computing
performance on different platforms.

2. Integrate the algorithms in the experiments’ reconstruction framework; demonstrate
excellent performance within the experiment’s environment. Prepare algorithms for
deployment in production workflows.

3. Evaluate the status of the reconstruction algorithms and of the computing
technologies, together with the experiments’ needs, in the long term. Our goal is to
provide informed input to the HEP community to adequately plan for software and
hardware of the next generation experiments.

A pilot project of three years will be able to complete phase 1. and part of phase 2.

Clearly the timelines for CMS Tracking and LArTPC Reconstruction differ in the details, so
Deliverables (D) and Milestones (M) for each year of the pilot project are summarized
separately for the two areas of work in Tables 1 and 2. Activities for the CMS Tracking work
will happen in synergy with the other collaborating institutions; note that the column “Lead
Inst.” only refers to which institution among FNAL and UO will give the leading contribution.

CMS Tracking

Type Description Lead Inst.

Year 1

M1.1 Benchmark physics results against the current CMS algorithm;
identify and start working on possible improvements

FNAL

M1.2 Profile computing performance on KNL; identify bottlenecks and start
working on solutions

UO

Year 2

D2.1 Produce updated version of the algorithm, including developments
from M1.1 and M1.2

FNAL, UO

D2.2 Port algorithm to CMSSW framework FNAL

Year 3

M3.1 Test algorithm on different architectures and platforms, including
those at CMS online facilities

FNAL, UO

D3.1 First version of algorithm ready for running in the CMS high level
trigger for LHC Run3

FNAL, UO

Table 1.​ Milestones and deliverables for the CMS Tracking area of the 3-year pilot project.

5

LArTPC Reconstruction

Type Description Lead Inst.

Year 1

M1.1 Setup working area; identify and port useful tools, data structures,
approaches from CMS Tracking work.

FNAL, UO

M1.2 Identify simple algorithm for feasibility study, produce standalone
implementation

FNAL

M1.3 Test different strategies for improved scalability of simple algorithm
on parallel architectures

UO

Year 2

D2.1 Complete optimized implementation of simple algorithm,
demonstrating large speedups for LArTPC reconstruction are
possible with parallel architectures.

FNAL, UO

D2.2 Integrate feasibility study into LArSoft FNAL

M2.1 Identify algorithm based on importance in terms of physics output, in
terms of its impact on the overall processing time, and its potential for
speedup with the new architectures.

FNAL

Year 3

M3.1 Design new optimized version of the algorithm FNAL, UO

M3.2 Test physics performance of the new algorithm FNAL

M3.3 Test algorithm on different architectures and platforms UO

D3.1 Prototype algorithm demonstrating promising results in terms of
physics performance and scalability

FNAL, UO

Table 2. Milestones and deliverables for the LArTPC Reconstruction area of the 3-year pilot

project.

Project Management Plan

Roles and responsibilities
The two participating institutions will focus on different aspects of the work and will be
responsible for the completion of the relative tasks.

Fermilab will lead the effort on all aspects related to the physics output of the work. It will be
responsible for identifying the key components of the experiments’ reconstruction chain to be

6

2018/07/24 SciDAC4 PI meeting

Synergies
• Cornell/Princeton/UCSD collaboration: original authors of parallel tracking

prototype for CMS. Our project is working in close contact with this collaboration.
- http://trackreco.github.io/

• ASCR institutes: RAPIDS (Platform Readiness)

• HEP Experiments: LHC (CMS, Atlas), Neutrino experiments (DUNE, SBN)

• LArSoft, shared base of physics software across LArTPC experiments:
- http://larsoft.org/

• Other HEP/ASCR DOE projects: Hep.TrkX (tracking with ML)
- https://heptrkx.github.io/

�13

2018/07/24 SciDAC4 PI meeting

Thank you!

�14

