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Computational context for Cosmic Frontier science with cosmological surveys, ‘
also showing the growing role of data-intensive computing and the associated
development of advanced machine learning and statistical methods
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Cosmology: Use of
HPC resources as high-
fidelity, large data-
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= SCiDAC-3: Work on
emulators is enabling a
new era in cosmological
analysis
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» Science Target: Precision fast prediction tools via
emulators built on a large simulated dataset for South 0
Pole Telescope and future CMB-S4 mission data
analysis, speed-up requirement: factor of ~1000

= Methodology: ~

e Large training/validation data set generated using the
CAMB code 1000

e Dimensional reduction via unsupervised learning
e High-dimensional non-parametric regression

Autoencoder/GP-based emulation of the
CMB TT angular power spectrum for
multiple cosmologies: bottom panel
shows error 1% level error control
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e Variational autoencoder and PCA-based dimensional Toy 2-d dimensionally-reduced models showing the difference
reduction methods compared (similar results) between autoencoding (left) and PCA (right)
P . . . Fncoded outputs Truncated PCA weights
e Sensitivity analyis via autoencoder-based nonlinear ) P A e 0.155
dimension reduction 1- 0.01 - . 0.150
e Gaussian Process-based interpolation for both . 0.145
reduction methods — . — o0
= Results achieved: = = 000 0,135
o Emulator with factor of ~2000 speed-up compared to .02 0130
CAMB with 1% errors over the desired dynamic range 7 e 0.15
(Top figure; paper in prep.) - —0:047] 0,190
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= Science Target: Search for strong lensing of galactic
sources by intervening galaxies (~100K expected in
LSST) for precision cosmology measurements; Deep
CNN regression for lens properties

= Methodology:

e Large synthetic data set based on full ray tracing
algorithm with 1) model halo mass distribution as
lenses and 2) halos from cosmological simulations,
realistic telecope properties (pixelization, noise, etc.);
single as well as stacked images

e DL techniques for classification, regression, and other
applications (denoising, deblending, —) Single and stacked noisy lensed training images for LSST

. MLIDL method: Sp{jeedup (re-scaled to 1 Cori node) o ot
classification
e Deep CNN classification/regression
o GANs for fast generation of images

@ ConvNet
regression

Performance: Modern GPUs
significantly faster than
manycore architectures

= Results achieved:

e 80-90% accuracy with very fast classification time (10
microsecs per image)

e Regression testing underway

NVIDIA Tesla P100 NVIDIA GeFroce GT755M Haswell 1 node 32 cores
(laptop) (Cori)
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= Science Target: Estimation of galaxy redshift ~
distribution conditioned on photometric ?
information, morphology, and spatial correlations; °:
application to LSST v 4 True redshift
= Methodology: i I B R e
e Large synthetic data set based on a set of 00 05 10 15 20 25 30
realistic templates o r
e ML techniques for classification (hidden space .. '|
variables), use of mixture models; Bayesian Syl
learning for posterior PDFs . 'ﬁ"
e Techniques for outlier rejection " ,/ \\
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= ML/DL method: et
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o Mixture models to follow galaxy sub-populations

e Autoencoders for hidden space variable searches © 1 ;,
e Various Gaussian Process-based approaches ° "’Aﬂ;‘;’,,'
 Bayesian Adaptive Regression Tree (BART) " |"
methods N | _
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= Results achieved: B e I B B m
e Multiple synthetic data sets constructed Multi-GP approach estimated
« Initial anlyses with different methods underway PDFs and comparisons to

training set z_true
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Other Topics; Future Work

» Emulation Landscape: 1) Extend work on
summary statistics to problems with
significantly higher dimensionality, O(10) to
O(100); 2) Multi-fidelity emulation; 3) Develop
new methods for applications to likelihood-free
scenarios (e.g., semi-analytic galaxy modeling);
4) Fast generation of multiple realizations of
‘raw’ sky data (e.g., synthetic catalog/image
emulation, prediction of dust maps from 21cm)

= Image Applications: Image cross-validation,
source de-blending algorithms, application to
calibration studies

= ML/DL Methods on HPC Platforms: Work on
scaling up ML and statistical methods on HPC

platforms with GPU acceleration (e.g.,
Cooley@ALCF, Summit@OLCF)

= Stats meets ML: Improve methods by
incorporating model information into ‘black box’
techniques; incorporate optimization methods
into Bayesian calibration
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