

Solving the nuclear quantum few- and many-body problem Direct connections to LQCD and TEAMS

computingnuclei.org

Funded by DOE/SC (NP and ASCR) and NNSA

People & Institutions

Argonne National Laboratory

W Jiang (p), T. Morris (p), S. Novario (p), T. Papenbrock, Z. Sun (p)

R. Butler, A. Lovato, E. (Rusty) Lusk, S. Narayanan, J. ONeal, M. Piarulli (p), S. Pieper, S. Wild, R. Wiringa Indiana University D. Berry, F. Fattoyev (p), C. Horowitz, Zidu Lin (g) Iowa State University R. Basili (q), M. Lockner (q), P. Maris, J. Vary Lawrence Berkeley National Laboratory E. Ng, C. Yang New Hampshire Lawrence Livermore National Laboratory Mashington. Vermions M. Kruse (p), E. Ormand, G. Papadimitriou (p), Manage Superty S. Quaglioni, N. Schunck lifordana Morth Daksts (bracon) Los Alamos National Laboratory hilmresotr J. Carlson, S. Gandolfi, E. Lawrence, Moho South Dakota New York H. Nam, A. Roggero (p) Wyening Rhode Mand Michigan State University Pennsylvania Md. Afibuzzaman (g), H.M. Aktulga, S. Bogner, Nebraska Communicios M. Chen (g), K. Fossez (p), S. Guiliani (p), Ultah H. Hergert, D. Lee, T. Li (g), J. Lietz (g), Calorado Kerrson D. Lonardoni (p), W. Nazarewicz, E. Olsen (p), S. Wang (p), J. Yao (p) West Winginia Oak Ridge National Laboratory Oktahoma Aripona Arkanssa G. Fann, G. Hagen, G. Jansen Ohio State University R. Caulfield (g), R. Furnstahl, J. Melendez (g), Тонав A. Tropiano (g), Y. Zhang (p) University of North Carolina at Chapel Hill Alaska J. Engel, E. Ney (g) 。恒 Handi University of Oregon B. Norris, S. Pollard (g) University of Tennessee

Good News: People

Maria Piarulli (ANL → Washington University)

Saori Pastore (LANL→ Washington University)

Rodrigo Navarro Perez (LLNL, Ohio→ San Diego State U)

All named to new faculty positions in 2018

NUCLEI researcher Pieter Maris (ISU)

elected to NUGEX

Matt Caplan (Indiana) 2018 APS dissertation award in Nuclear Physics

Physics of Nuclei & Matter

- NN interactions & chiral effect field theory
- Light Nuclear Spectra
- Heavy neutron-rich nuclei (FRIB)
- Beta Decay
- Nuclear Structure and dynamics at short-ranges (NN separation)
- Electron Scattering (JLAB)
- Neutrino Scattering (DUNE)
- Neutron Stars (LIGO)
- New support from NNSA:

 light ion reactions and fission
 strong connections to lattice QCD

 and nuclear astrophysics

ASCR-supported work in NUCLEI SciDAC Institutes in Blue

- Algorithmic/Automatic Differentiation: S.H. Krishna Narayanan
- Eigenvalue Solvers/Linear Algebra: Esmond Ng, Chao Yang (FASTMath)
- High-Performance Computing: Hai Ah Nam
- Load Balancing/Memory Management: Ralph Butler, Rusty Lusk
- Multiresolution/Nonlinear Approximation: George Fann
- Numerical Optimization: Jared O'Neal, Stefan Wild (FASTMath)
- Performance Optimization: H. Metin Aktulga, Gustav Jansen
- Performance Optimization: Boyana Norris (RAPIDS), Sam Pollard
- Uncertainty Quantification: Earl Lawrence

RAPIDS Focus Areas

NUCLEI areas w/ ongoing collaborations

Potential future NUCLEI collaborations

FASTMath is focused on eight core technology areas

Papers / Talks in 2018

Papers/Talks: 2018

41 Papers and 35 talks

including 10 Physical Review Letters,

1 Nature Physics

6 joint physics and Math/CS

6 methods papers (including

No-Core Shell Model Coupled Cluster AFMC

DFT

Leadership-class

supercomputers

Deep Learning

Quantum Computing

Tin isotopes

Neutron Stars

Tetra-neutron

Localization

Chiral Dynamics

Weak Transitions

Electron and Neutrino

Scattering

classical/quantum computing

Annual Meeting: UTK May 29-June 31 ~50 participants

Chiral Interactions and Light Nuclear Spectra

$$H = \sum_{i} \frac{-\hbar^{2}}{2m} \nabla_{i}^{2} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk}$$

Interactions depend upon spins (\uparrow or \downarrow), isospins (n or p) and separation of the nucleons (\mathbf{r}_{ij} , \mathbf{r}_{ik})

Use chiral formulations of NN and NNN interactions;

Either Delta-full or Delta-less

Fit NN using Pounders to NN data,

NNN to light nuclei

using DMEM for memory management,

No-core Shell Model (NCSM)

Diagonalizes in HO basis

GFMC:

Uses MC for spatial d.o.f.

AFDMC:

Uses MC for space, spin & isos

w/o Deltas, AFDMC

With Deltas, GFMC

Piarulli, et al, PRL 2018

Lonardoni, et al., PRL 2018

Deep Learning for Nuclear Binding Energy and Radius

Developed an artificial neural network for NCSM Demonstrated predictive power

Architecture of neural network (above) used successfully to extrapolate the ⁶Li ground stat energy from modest basis spaces (dashed line sequence) to extreme basis spaces (solid line sequence) achieving independence of basis parameters (flat line in left figure).

Coupled Cluster for heavier nuclei

Summit performance

DIMENSION

See Jansen and Hergert poster

Coupled Cluster and In-medium SRG for heavier nuclei

Low-lying states in Tin 100 (50 neutrons and 50 protons)

Shell closure for N=32 for Different isotopes expos vs. theory (IMSRG)

T. Morris et al, PRL 2018

Leistenschneider, et al. PRL (2018)

Relevant to nucleosynthesis

Density function theory for very heavy nuclei: Oganesson (Z=118)

Left: electronic localization for noble gases Right: neutron localization in heavy nuclei

Using density functional theory and advanced computational techniques, We study the transition from strong shell structure (localization) to uniform matter.

Shell structure transitions to uniform matter in large nuclei

P. Jerabek, et al, PRL 2018

Weak Interactions in Nuclei From beta decay to quasi elastic scattering

Historically significant issues:

Over predicting beta decay

Under predicting quasi elastic scattering

Beta Decay

Empirically need to decrease rate (matrix element squared) by ~50%

Quasielastic Scattering

Empirically need to increase rate (matrix element squared) by ~30-40%

Beta decay in light and medium-mass nuclei

Super allowed Gamow-Teller decay of 101

Pastore, et al PRC (2018)

Hagen, et al, CC

NN correlations and currents are critical - also for quasi elastic scattering

Short-range structure of Nuclei: electron and neutrino scattering

e-scattering

Lovato, et al, PRL (2016)

anti-V

Lovato, et al, PRC (2018)

Short-range structure of Neutron Matter: Neutron star cooling and gravitational Waves

Observed cooling from MXB 1659-29 consistent with 'fast' cooling: consistent with direct Urca in the core

Edward F. Brown, C. J. Horowitz, et al., Phys. Rev. Lett. 120, 172701 (2018).

Constraints on radius and tidal deformability of a neutron star

F. J Fattoyev, J. Piekarewicz, and C. J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018).

Quantum Computing in Nuclear Physics

Computing the Deuteron
On actual quantum computers

Methods for computing
Quantum dynamics
(electron and neutrino scattering)

Conclusions
Exciting Era for Nuclear Physics:

Many New Capabilities for Computing Nuclear Structure
and Dynamics:

Many new experiments and observations

- Ab-initio calculations of nuclear structure and decay
- Neutron-rich nuclei and r-process nucleosynthesis
- Weak interactions at low-energy (beta decay) and
- high-energy (electron and neutrino scattering)
- Neutrinos in astrophysics
- Gravitational waves and neutron star structure

Outstanding early career scientists to take advantage of these opportunities

Funded by DOE/SC (NP and ASCR) and NNSA: Thank you!