Scaling Quantum Mechanics and First Principles Dynamics for Accuracy and Efficiency

Todd J. Martínez SLAC National Accelerator Laboratory Stanford University

SciDAC4 Project: Designing Photocatalysts Through Scalable Quantum Mechanics and Dynamics

Project Overview

- Improve computational modeling tools for modern architectures to enable design of improved photocatalysts
- Major Thrusts
 - Enable Rapid Prototyping and deployment of multi-level parallel algorithms (Alex Aiken, Kunle Olukotun, Lexing Ying)
 - Legion/Regent for high-level parallel expression
 - DeLite to build domain specific languages for quantum chemistry and first principle dynamics
 - Develop and implement modular library frameworks for large-scale atomistic simulations (Ed Hohenstein, Todd Martínez, Robert Parrish)
 - Lightspeed framework to build electronic structure from highly tuned primitives
 - Design of photoactivated enzymes (Ron Dror, Possu Huang, TJ Lane, Henry van den Bedem)
 - Protein design with novel cofactors
 - QM/MM investigations of photoenzymes

FAP: CO₂ Photochemistry in Nature

Fatty Acid Photodecarboxylase

- Photo-activated production of alkanes
- Requirement for light: not yet clear
- Mechanism: not known
- Project goal: QM calculations to predict mechanism, verify by comparing to spectroscopy, crystallography

Chromophore in FAP

Legion

- Task-based programming model
 - Heterogeneous machines
 - Distributed memory
- Key features
 - Programs are written without specifying where computations will run and where data will be placed
 - Separate *mapping* phase allows program to be tuned to a particular machine
- Currently working to apply Legion to electron repulsion integral generation

Task graph for one time step of a simple application

DeLite

- DeLite framework allows for easy specification of domain specific languages
 - Domain specific optimizations
 - Structure computation and data
 - Optimize mapping to different hardware targets such as GPUs or FPGAs
- Working to develop DSL for J/K matrix build
- Using DeLite multiscale neural network DSL to machine learn better exchange-correlation functionals

$$\underbrace{\left[-\frac{1}{2}\nabla^2 + V_{KS}[\rho]\right]}_{H[\rho]}\psi_i(r) = \lambda_i\psi_i(r), \qquad \rho(r) = \sum_{i=1}^{N_e} |\psi_i(r)|^2$$

N T

Learn the nonlinear map from potential to density

Primitives for Electronic Structure?

Continuum Solvation and QM/MM

$$V_{k} = \sum_{\mu\nu} P_{\mu\nu}(\mu\nu|k) \qquad \Delta F_{\mu\nu}^{s} = \sum_{k} q_{k}(\mu\nu|k)$$

We built fast GPU versions of these primitives Build a framework that allows easy reuse?

Lightspeed: Library Layout

R.M. Parrish, T.J. Martinez and co-workers, in preparation.

Lightspeed

1	<pre>import lightspeed as ls # The L</pre>	ightspeed module				
2	resources = ls.ResourceList.build() # Use all available CPU/GPU resources					
3	<pre>molecule = ls.Molecule.from_xyz_file('geom.xyz') # Read ./geom.xyz and build Molecule</pre>					
4	<pre>basis = ls.BasisSet.from_gbs_file(molecule, 'cc-pvdz') # Construct cc-pVDZ basis</pre>					
5	<pre>pairlist = ls.PairList.build_schwarz(basis, basis, 1.0E-14) # Construct PairList</pre>					
6	S = ls.IntBox.compute_overlap(resources, pairlist) # Compute the overlap matrix as Tensor					
7	<pre>J = ls.IntBox.compute_coulomb(</pre>	# Compute the Coulomb matrix as Tensor				
8	resources,	# The resources to use				
9	<pre>ls.Ewald.coulomb(),</pre>	# The standard Coulomb interaction operator				
10	pairlist,	# The pairlist on the bra (12)				
11	pairlist,	# The pairlist on the ket 34)				
12	S,	# The input density matrix (S used for demo only)				
13	1.0E-6,	# The double-precision cutoff				
14	1.0E-14)	# The single-precision cutoff				
15	print J					

R.M. Parrish, T.J. Martinez and co-workers, in preparation.

Lightspeed Example: QM/MM FOMO-CASCI

```
import lightspeed as ls # The lightspeed module
 1
     import psiw # The "psidewinder" lightweight electronic structure module
 2
     import md # The lightweight adiabatic MD code
 3
    # CPU and/or GPU resources
 4
     resources = ls.ResourceList.build()
 5
    # OpenMM-based QM/MM (Mechanical + Coulomb embedding w/ link H atoms)
 6
     qmmm = psiw.QMMM.from_prmtop(
 7
         prmtopfile='pyp.prmtop',
 8
 9
         inpcrdfile='pyp.rst',
10
         qmindsfile='pyp.qm',
11
         charge=-1.0,
12
    # Geometry manages all external environment considerations
13
14
     geom = psiw.Geometry.build(
         resources=resources,
15
16
         gmmm=gmmm,
17
         basisname='6-31g',
18
    # FON-RHF (4 active electrons in 3 fractional orbitals)
19
20
     ref = psiw.RHF.from_options(
21
         geometry=geom,
22
         q convergence=1.0E-6,
         fomo=True,
23
         fomo_method='gaussian',
24
         fomo temp=0.2,
25
26
         fomo nocc=107,
27
         fomo_nact=3,
28
```

Lightspeed Example: QM/MM FOMO-CASCI (continued)

```
ref.compute energy()
29
     # FOMO-CASCI (3 singlet states)
30
31
     casci = psiw.CASCI.from_options(
32
         reference=ref,
         nocc=107,
33
         nact=3,
34
35
         nalpha=2,
36
         nbeta=2,
         S inds=[\emptyset],
37
38
         S_nstates=[3],
39
     casci.compute energy()
40
```


Key Methods:

```
grad = cas.compute_gradient(0, 0)
coup = cas.compute_coupling(0, 0, 1)
overlap = psiw.CASCI.compute_overlap(cas, cas, 0)
```

And another dozen lines to production-scale AIMD (see Parrish poster)...

Lightspeed Enables Rapid Prototyping: Parallax – Neglect of Fragment Differential Overlap (NFDO)

Current State of the Art:

Next Target:

At the Least, Coulomb Embedding is Required: => Parallax Idea:

$$\begin{split} E &\equiv \sum_A E_A^{\rm SCF} \\ + \frac{1}{2} \sum_A \sum_{B'} E_{AB'}^{\rm Coulomb} \\ + \frac{1}{2} \sum_A \sum_{B'} E_{AB'}^{6-12} \end{split}$$

Parallax: PME Approach

Not Fourier Representable

Fourier Representable

ESP of blurred density (long-range Ewald ESP):

$$\tilde{\rho}(\vec{r}_1) \stackrel{\text{FFT}}{\to} \hat{\rho}(\vec{k}) \stackrel{4\pi/k^2}{\to} \hat{Z}(\vec{k}) \stackrel{\text{IFFT}}{\to} \tilde{Z}(\vec{r}_1)$$

T. Darden, D. York, and L. Pedersen, J. Chem. Phys., 98, 10089 (1993).
L. Füsti-Molnár and Peter Pulay, J. Chem. Phys., 117, 7827 (2002).
C.-M. Chang, Y. Shao, and J. Kong, J. Chem. Phys., 136, 114112 (2012).

Parallax: Full Coulomb Embedding (Long Range)

Parallax: Full Coulomb Embedding (Short Range)

=> Linear Scaling, highly but not embarrassingly parallel.

Parallax: Sensitivity to Grid/Ewald Parameters

Short-Range Cutoff Distance:

Fourier Grid Spacing:

Parallax: RHF/STO-3G 648-Atom Unit Cell -1.6x10⁴ E_h SCF Energy

Parallax: Scaling for Simple Water Box

Parallax: RHF/STO-3G Timings on PBC Water Boxes (10 SCF Iterations + Gradient)

12-Core Intel E5-2640@2.5 GHz/400 GB RAM

Parallax – Next Steps

- Benchmark accuracy of approach
- Application to chemical reactions in solution
 - Reacting system treated as a single fragment
- Extend to allow for fragmentation across covalent bonds
- Extend to allow for dynamic fragmentation

Recommendation Systems

Antonio Bolfo/Reportage for The New York Time

Recommendation Systems

	Dark City	Star Wars	Zero Dark Thirty	Steel Magnolias
Joe	1	?	2	1
Fred	5	5	1	1
Jane	?	?	5	?
Alex	?	3	?	?
Sara	1	?	?	5

Need to complete the matrix...

Is this possible?

Only if the matrix does not have much information!

Machine learning strategy: ASSUME the problem is well-posed

In example above – 10 numbers out of 20, assume this is enough to determine remaining 10 numbers...

Singular Value Decomposition

Assume rank is small and find best low rank approximation that reproduces known entries in the matrix...

Full Cl

Full Configuration Interaction:

$$\psi = \sum_{I} c_{I} |I\rangle$$

All possible arrangements of N electrons in M orbitals

$$\begin{array}{cccc} & \stackrel{\downarrow}{\uparrow} & \stackrel{\uparrow}{\uparrow} & \stackrel{\uparrow\downarrow}{\downarrow} \\ \hline & \uparrow & \stackrel{\downarrow}{\downarrow} \\ c_1 \varphi_1 \overline{\varphi}_1 + c_2 \varphi_1 \overline{\varphi}_2 + c_3 \varphi_2 \overline{\varphi}_1 + c_4 \varphi_2 \overline{\varphi}_2 \end{array}$$

Need matrix-vector products Hc, vector length N_1 is factorial in N,M

Formal cost: $O(N_I^2)$ Accounting for sparsity of **H**: $O(N_I)$

Rank Sparsity in Full CI?

How can we reveal noninformative nature of CI vector?

Rearrange vector to a matrix:

$$\left\{ \begin{array}{c} \varphi_1, \varphi_2 \end{array} \right\} \otimes \left\{ \overline{\varphi}_1, \overline{\varphi}_2 \right\} \quad \underline{\uparrow} \quad \underline{\uparrow} \quad \underline{\frown} \quad \underline$$

 $\psi = \sum_{IJ} C_{IJ} \left| \alpha_{I} \beta_{J} \right\rangle$

"α-string" "β-string"

Now, play same trick from recommendation systems: C

$$C = \sum_{r}^{N_r} \lambda_r P_r Q_r^T$$

 $\mathbf{\Lambda}$

Memory requirement, Computational cost: $O\left(\sqrt{N_I}\right)$

Note early work by Koch and later also Taylor...

Are Electronic Wavefunctions Informative?

for accurate energy differences!

rr-FCI Performance

rr-FCI

- Renaissance in selected CI methods exploiting element sparsity of CI vector (Evangelista, Head-Gordon, Umrigar, Alavi): FCI-QMC, Heat Bath-CI, Adaptive Sampling CI
- These also increase the efficiency of full CI some are deterministic (ASCI) and others are stochastic (FCI-QMC, HBCI)
- rr-FCI exploits *rank* sparsity of CI vector
 - There is an rr-FCI value for *every* element of the CI vector
 - This is qualitatively different from approximations which neglect small elements
- Deterministic, so gradient is straightforward for dynamics
- Working to improve convergence and to exploit mixed precision

Tensor Hypercontraction

Applying decomposition techniques to 4th order tensor:

$$(ij \mid kl) = \sum_{\substack{PQ \\ \uparrow}} X_{iP} X_{jP} Z_{PQ} X_{kQ} X_{lQ}$$

P,Q indices have approx. same range as basis

i,j,k,l are *unpinned*! Can sum over any of these without carrying along the others...

Numerical methods to determine X and Z simultaneously... Analytic formulas to determine Z, given X Numerical methods to determine X, given Z

Formal scaling of all pair methods reduced to O(N⁴)!

Implementation of THC

$$E_{\rm MP2} = \sum_{ijab} t_{ij}^{ab} \left[2(ia|jb) - (ib|ja) \right]$$

 $E \leftarrow 2\sum_{\nu} \sum_{ijab} \sum_{PQRS} \tau_i^{\nu} \tau_j^{\nu} \tau_a^{\nu} \tau_b^{\nu} \cdot X_i^P X_a^P Z^{PQ} X_j^Q X_b^Q \cdot X_i^R X_a^R Z^{RS} X_j^S X_b^S$

Where to put parenthesis?

Automatic Factorization for THC

Conclusions

- Lightspeed framework being developed to rapidly prototype new algorithms: will provide lessons for more flexible DSLs and implementation of core "boxes" in Legion
- NFDO method being developed using the Lightspeed framework demonstrates ability to rapidly prototype in this environment
- Rank reduced Full CI leverages low complexity of CI wavefunctions
- Rank reduction techniques can also be used for electron repulsion integrals with tensor hypercontraction – we are exploring automated code generation and optimization to implement THC algorithms
- Simulations of photoenzyme activity in FAP are underway and will be enabled/facilitated by quantum chemistry and first principles dynamics developments

Acknowledgments

- Alex Aiken
- Kunle Olukotun
- Lexing Ying
- **TJ** Lane
- Henry Van Den Bedem
- **Ron Dror**
- **Possu Huang**
- Ed Hohenstein
- **Robert Parrish**
- Alice Walker •
- **Scott Fales** •

- Henrik Koch ۲
- **Stefan Seritan** •
- **Benjamin Levine**
- Nick Settje

\$\$: DOE ASCR / DOE BES