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Correlated electron systems

Strong electron-electron interactions

* Electrons behave collectively and produce nearly
degenerate emergent phases

Unconventional superconductors

e Cuprates, iron-based superconductors, ...

From Keimer et al., Nature ‘15
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From real materials to reduced models

YBCO CuO layer 2D Hubbard model
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Numerical methods

Determinant Quantum Monte Carlo (DQMC)

>
e Finite size cluster Blankenbecler et al., PRD ‘81.
e Monte Carlo sampling of Z = Tre ##
e Limited by Fermion sign problem
Dynamic Cluster Approximation DCA(QMC) S

: : ' ., RMP 05.
e Cluster embedded in self-consistent host Maier et al., 0>

e Monte Carlo sampling of Z = [ D[¢p*p]eS1®"¢]

e Limited by Fermion sign problem (milder)

Density Matrix Renormalization group (DMRG)

¢ Finite size, quasi-1D system White., PRL92.

e Truncates Hilbert space based on density matrix

e Limited by entanglement entropy
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Neural networks to speed up DQMC

DQMC simulations

* Local updates requires updating the Green’s function at a cost
O(N?)
Fully connected network for
* Global updates requires recomputing the Green’s function from local updates

scratch at a cost O(N3L)

e We trained a fully connected neural network to predict
acceptance probabilities for local updates and a convolutional
neural network to predict global updates. The only input to the
network is the temperature and auxiliary field configurations.

* Many updates can be performed at O(1) cost; the Green’s function
is recomputed after many cheap updates.

* We train the network using data from a small 4 x 4 lattice, then use
the network to sample on a larger system.



Neural Network DQMC (NNDQMC) for 2D Holstein model

NNDQMC simulations with local and global
ny=1,0=t/2,A=1t/2 (uniform) updates of the phonon fields

e All parameters were identical between DQMC
and NNDQMC simulations such that
autocorrelation times are comparable

* Obtained identical results for both methods.

* Full DQMC has an effective scaling
O(N®8); NNDQMLC has an effective scaling
0(N4'8).

* Our method maintains higher acceptance rates
compared to the self-learning method
introduced by C. Chen et al., arXiv:1802.06177.



Finite temperature dynamics of
interacting qguantum models

Thermal pure quantum state -
microcanonical Lanczos method

* Microcanonical Lanczos method (MCLM) is much more
efficient than finite temperature Lanzcos (FTLM), but

'~ 1D § = % Heisenberg chain
needs internal energy (H) at temperature T.

 We propose to use the thermal pure quantum state (TPQ)
to obtain (H) efficiently, then use MCLM targeting excited
state [1;) with energy eigenvalue 1 = (H).

e TPQ-MCLM is computationally inexpensive and found to
give practically identical results to much more expensive
FTLM method.

e Future: DMRG instead of Lanczos

S. Okamoto et al., PRB 83 ‘18



Green’s function

DCA++ on Summit

Science objective

» Efficient calculations of the 4-point
electron-electron scattering vertex

* Provides deepest insight into
dominant correlations

k,, w,,0, ky, wy,0,

Optimization of DCA++ for Summit
* GPU support for measurements of 4-point scattering vertex
*  Factor 7 on-node performance speedup over previous implementation

* Efficient calculations of the
electron-electron scattering vertex

* Inherent parallelism in Monte Carlo results in near ideal scaling
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Pairing in systems with incipient bands:

A DCA(QMC) study

Electronic structure of weakly doped iron-SC

* 2 or 3 hole-pockets and 2 electron-pockets

Heavily electron doped iron-SC

«  AgFe,Se, (A=K, Rb, Cs; T. ~ 30 K)

* FeSe monolayer on STO (T, ~ 60-100 K)

e (LipgFey,)OHFeSe (T, ~ 40 K)

* Hole bands are ~ 50 — 100 meV below Fermi energy
Weak coupling studies of pairing in systems
with incipient bands

* Chenetal, PRB ‘15, Linscheid et al., PRL’ 16, Mishra, TAM,
Scalapino, Sci. Rep. ‘16, Leong & Phillips, PRB ‘16
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Bilayer Hubbard model and Fe-based superconductors

€x = —2t(cosky + cosk,) —t, cosk,

- Bonding and anti-bonding bands

TAM & D.J. Scalapino, PRB 83 ‘11
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Bilayer with 2 Fermi pockets

U = 6t,(n) = 0.95; (4x4)x2 cluster
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TAM & D.J. Scalapino, PRB 83 ‘11

| e s*

A(k) = Ay (cosk, — cosk,)

t,=3.0

+

|- d-wave

A(k) = Ay cosk,




Taking the bilayer through a Lifshitz transition
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Bilayer with 1 Fermi pocket and incipient band

U = 8t,(n) = 0.85; (4x4)x2 cluster

Lifshitz transition
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Leading sT pairing state

Eigenvalues and —vectors of Bethe-Salpeter T , , , ,
equation (linearized, fully renormalized gap _NZ: [k, k")G(K)G(=k)pa(k') = Agpa(k)
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Effective pair scattering on active band
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Additional attractive interaction from virtual pair
scattering to unoccupied electron-band



QMC results for effective interaction
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Summary & Conclusions

CompFUSE project
« DQMC, DCA(QMC) and DMRG algorithm development
* Simulations of unconventional superconductors and quantum spin liquids

* Focus on dynamics and 4-point scattering vertex

Pairing in systems with incipient bands
 DCA(QMC) study of bilayer Hubbard model with incipient band
 Dominant pairing correlations are s-wave
 Gap onincipient band has opposite sign and larger magnitude than gap on Fermi surface

e Virtual pair scattering to incipient band gives effectively attractive pairing interaction for
Fermi surface states
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