# Partnership for Multiscale Gyrokinetic **7** (MGK) Turbulence

David Hatch [Principal Investigator], M. Kotschenreuther, F. Jenko, C. Michoski (U. Texas-Austin); L. LoDestro, J. Parker (LLNL); W. Dorland (U. Maryland); D. Ernst (MIT) G. Hammett, A. Hakim (PPPL);





mgkscidac.org

# MGK Partnership (mgkscidac.org)

- Achieve profound scientific breakthroughs on 'frontier' multiscale turbulent transport problems
- Develop practical new methods to bring these problems within the scope of whole device modeling
- Ultimately: integrate with AToM framework



mgkscidac.org

# Multiscale Gyrokinetic Turbulence

- Kinetic turbulence: evolve f(**x**,**v**,t)
  - Turbulence is multiscale in **all** dimensions
  - Time scales: Turbulence vs Transport
  - Spatial scales:
    - Equilbrium vs fluctuations
    - Ion vs Electron
  - Phase space (scales in velocity space)
    - Low vs high order moments (i.e. fluid vs kinetic)
  - MGK addresses multiscale issues in **all** dimensions
- Multiscale phenomena can be an opportunity and a challenge
  - Opportunity: exploit scale separation to simplify
  - Challenge: need to address multiple scales directly

# Frontier Multiscale Turbulent Transport Problems

## **Exploit Multiscale**

- Bridging the gap between turbulence and transport time scales for global turbulence [TANGO code]
- Ion-electron multiscale turbulence [GENE, Gkeyll codes]
  - Practical algorithms for fast/efficient cross scale coupling
- Hermite-Laguerre gyrokinetic code [GX code]: seamless transition between fluid and kinetic to optimize rigor-efficiency

## Deal Directly with Multiscale

- Turbulence in transport barriers (H-mode pedestal, Internal transport barriers) [GENE, Gkeyll codes]
- Ion-electron multiscale turbulence [GENE, Gkeyll codes]
  - Full multiscale simulations in H-mode pedestal
- New kinetic algorithms [Gkeyll]

# Tango: Turbulence + Transport

## Goal: use first-principles gyrokinetic turbulence simulations to predict plasma behavior at long experimental timescales.

• *Problem:* Direct numerical simulation capturing both turbulence and confinement timescales is prohibitively computationally expensive, and could infrequently be performed Turbulence time ~ 10  $\mu$ s Energy confinement time ~ 1 s

Vision: Multiscale method to exploit the timescale gap.

- Couple a transport solver with global gyrokinetic simulation for calculation of fluxes, e.g., using GENE
- Challenge: Need efficient methods and algorithms for coupling directly with global turbulence simulation  $\frac{\partial n}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial \psi} \left[ V' \langle \mathbf{\Gamma}[n] \cdot \nabla \psi \rangle \right] = S_n$

**Benefits:** High-fidelity predictive turbulence + transport simulations. Can be a key component of a comprehensive whole-device model

- Transport at the confinement timescale, using best available gyrokinetic simulations as a high-cost, high-benefit alternative to computationally cheaper quasilinear transport models
- Nonlocal effects e.g., internal transport barriers (ITBs)
- Enabling a new form of discovery science

# Tango: Turbulence + Transport

#### Tango:

- 1D transport code that implements method from [1] for coupling transport with global turbulence simulations
- Open source, in Python, available on GitHub
- Currently coupled to global GENE

#### Plan & Goals:

- Ratchet up to increasing physics fidelity requires generalizations of the coupling method, handling multi-channel turbulent transport, etc.
  - Synergies with AToM possible
- Simulate frontier physics, such as ITBs
- Demonstrate real-world value by enabling quantitative predictions for experiments

#### **References:**

[1] A. Shestakov, R. Cohen, J. Crotinger, L. LoDestro, A. Tarditi, X. Xu, J. Comp. Phys. (2003)
[2] J. Parker, L. LoDestro, D. Told, G. Merlo, L. Ricketson, A. Campos, F. Jenko, J. Hittinger, Nucl. Fusion (2018).

[3] J. Parker, L. LoDestro, A. Campos, plasma (2018)

Convergence to steady state temperature profile for a specified input heating power



# The Gyrokinetic GENE Code

#### Gyrokinetic Electromagnetic Numerical Experiment

- Continuum approach to gyrokinetics (evolve distribution function on grid).
- Publicly available, world-wide user base from ~30 scientific institutions (US), ~100 worldwide
- Modes of operation:
  - delta-f & full-f (gradient-driven, fluxdriven)
  - flux-tube & full-flux-surface & global
- Unique combination of various FDM, and spectral methods
- Extensive physics: kinetic electrons, electromagnetic effects, collisions, realistic MHD equilibria, electron-scale turbulence...
- Part of fusion whole device modeling ECP project

(genecode.org; Jenko et al PoP 2000)

#### **GENE on top-level HPC resources**





Strong scaling of GENE on Titan (2k-16k nodes)

# RAPIDS—Performance Tuning of GENE Code on the Intel KNL Architectures

- RAPIDS—Shan Hongzhang (LBL)
- Target Problem: P=2048 with 6D partition 1x2x8x16x1x8, 1 species

#### **Current Progress**

#### **Future Work**

- Redesigned the timer so that its overhead can be ignored
- Profiled the code to identify important functions and loops
- Improved the communication performance about 15% by avoiding using the user defined MPI data types for noncontiguous data
- Study the FFT performance, which consumes about 30% of the total time
- Rewrite some loops and data structure to improve vectorization
- Study the OpenMP performance effects

# Pedestal Turbulence with GENE

 Recent breakthroughs in pedestal turbulence with GENE ([Hatch et al NF 2016, 2017; Kotschenreuther et al NF 2017])

Goals:

- UQ for pedestal turbulence:
  - Test errors/uncertainties in exp. input
  - Develop reduced models, surrogates
  - Compare against experimental observations
- Ion-electron multiscale: substantial transport at ion scales and electron scales. As yet no tests of cross-scale coupling (likely very different than core multiscale).
- Develop ability to evolve pedestal profiles, predict pedestal structure, model and predict ELM free regimes (coupling with TANGO)



What is the role of cross scale coupling?

## Gkeyll Code: novel kinetic algorithms, multiple SciDACS & Applications

Novel version of Discontinuous Galerkin (DG) algorithm, conserves energy for Hamiltonian system even with upwind fluxes. High-order local algorithms reduce communication costs, helpful for Exascale. New modal version 30x faster than nodal version, uses sparseness of modal interactions.

Framework: Lua over C++, uses ADIOS, Eigen, MPI, ... In HBPS SciDAC, collaborating w. ORNL applied math group on algorithm studies. Many opportunities for collaboration: improve IO scaling, performance tuning, GPU porting, ...

#### 3 Main Versions, used in 3 SciDACs:

- Gyrokinetic DG version for edge turbulence in fusion, in MGK SciDAC project (D. Hatch, PI) for pedestal / multiscale work, in HBPS SciDAC project (C.S. Chang, PI) for scrape-off-layer turbulence work.
- Vlasov-Maxwell/Poisson DG version: solar wind turbulence (PU & U. Maryland), plasma-surface interactions in thrusters (AFOSR / Virginia Tech) & tokamak disruption SciDAC (LANL / Virginia Tech)
- Multi-moment multi-fluid (extended MHD) finite-volume version: reconnection (Princeton Center for Heliophysics), global magnetosphere simulations (UNH)

#### See poster by Ammar Hakim for more info.

# Gkeyll: First Continuum 5D Gyrokinetic Simulations of Turbulence in SOL with sheath model boundary conditions



Q. Pan et al. Phys. Plasmas (2018), similar work in straight fields with GENE.

#### Practical Algorithms for Ion/Electron Multiscale **Turbulence Interaction in Gyrokinetic Simulations**

- Exploit factor ~60 scale separation in y-direction and time to significantly reduce computation time for turbulent transport with cross-scale coupling (MIT, PPPL, Texas, Maryland):  $\Delta k_i \rho_i \sim \Delta k_e \rho_e \Rightarrow \Delta k_e \sim 60 \Delta k_i$  but presently  $\Delta k_e \sim \Delta k_i$
- Non-local coupling between scales important in some scenarios [Goerler (GENE), Maeyama(GKW), Howard(GYRO) heroic ~10's M hour gyrokinetic

lon scales shear Electron scales

Electron scales damp ion scale zonal flows and beat into ion scales, increasing transport

Algorithm: Save time by not using electron y-grid/timestep for ion scales



Use GKEYLL for initial 2d, one-field tests, then GENE; compare to full multiscale simulations D. R. Ernst, G. W. Hammett et al.



First Global Multiscale Simulation (GENE, TCV case)

### Formulated First Exact Linearized Landau Gyrokinetic Collision Operator in Conservative Form

- Conservative and symmetric structure enables a finite-volume or spectral discretization that preserves the conservation laws
  - Present model operators conserve globally, but are incorrect locally
- Initially implementing in the GENE code using finite-volume
- Future: Spectral methods with ~N scaling as well as Krylov-implicit methods; implementation in Gkeyll edge gyrokinetic code

$$C^{
m gk}_{ab}\left(h_{a},f_{b0};f_{a0},h_{b}
ight)=-
abla\cdot ar{J}_{ab}$$
 (Including FLR terms)

$$\underline{J}_{ab} \equiv \frac{\ln\Lambda}{8\pi} \frac{e_a^2 e_b^2}{\epsilon_0^2 m_a} \int 2\pi d^2 v' \left( \frac{h_a}{m_b} \underline{I}_{E}^T \cdot \nabla_{v'} f'_{b0} - \frac{f'_{b0}}{m_a} \underline{I}_{E}^T \cdot \nabla_{v} h_a + \frac{f_{a0}}{m_b} \underline{I}_{E}^F \cdot \nabla_{v'} h'_b - \frac{h'_b}{m_a} \underline{I}_{E}^F \cdot \nabla_{v} f_{a0} \right)$$

$$\underline{I}_{E,D}^{F,T} = \int \frac{d\phi}{2\pi} \int \frac{d\phi'}{2\pi} g_1(\phi) g_2(\phi') g_3(k\rho' \sin \phi' - k\rho \sin \phi) \left( \frac{\underline{I} u^2 - \underline{u} u}{u^3} \right)$$

$$\underline{u} = \underline{v} - \underline{v'}$$

$$g_j(x) \in \{1, \sin x, \cos x\}$$

$$\underline{I}_{E,D}^{F,T} \quad \text{Gyrokinetic tensors for test-particle (field-particle) drag and diffusion coefficients}$$

Q. Pan, D. R. Ernst



## GX code: Fluid vs Kinetic—why not both?

- GX code (Dorland et al)
  - Laguerre / Hermite in velocity space
  - Can use intelligent closures and be gyrofluid when applicable
  - Alternatively can keep lots of moments and be fully gyrokinetic
  - Status [Mandell, Dorland, Landreman, JPP 2018]:
    - Collision operator has been implemented
    - Linear closures tested / demonstrated
    - Extensive benchmarks of linear physics



- Goals:
  - Seamless transition between fluid and kinetic descriptions depending on physical regime, desired speed / accuracy
  - Efficiently explore broad parameter space for optimization

# Multi-fidelity database for UQ, V&V, ML

- Integrate MGK codes with OMFIT
  - Initial targets GENE (underway—Ernst), TANGO
  - Eventually Gkeyll and GX
- Develop database
  - Data groomed for integrated advanced data analytics (e.g. UQ, V&V, ML)
  - Experimental data curation (e.g. MDSplus, SQL)
  - Multifidelity simulation data (ranging from quasilinear to full global GK)
  - Develop UQ and ML algorithms for data mining
  - Integrate with AToM and related European initiatives (e.g. Minerva)
  - Initial efforts related to transport but could potentially be generalized to encompass phenomena of interest for other SciDAC areas (disruptions, etc)
- Goal:
  - Make multiple tools accessible within WDM framework
  - Use UQ /ML to identify tool that is most rigorous/efficient/predictive/fault tolerant, etc. for a given scenario

# Inter-SciDAC Integration

- Connections with ATOM+OMFIT:
  - GENE+OMFIT integration underway (Ernst)
  - Using OMFIT to analyze our recent DIII-D experiments for IAEA 2018 oral: Profile fitting, Kinetic EFITs, TRANSP, Edge Stability Analysis
  - Future work?
    - Tango integration
    - ATOM codes (NEO, TGLF) integrated into Tango
    - Coordination of use cases (discussion with C. Holland)
  - Goal: all MGK codes/tools fully integrated and accessible within a whole device modeling framework
- Connections with HBPS
  - GENE benchmarking with XGC and GEM
  - Gkeyll development for scrape off layer
- Open to other connections where useful

## Interaction with SciDAC Institutes

- Initiated collaborations with institutes
  - RAPIDS:
    - Profiling and optimization of GENE for Cori (KNL)
  - FASTMath
    - Initial contact about
      - Implicit solvers for collision operators
      - Multiscale algorithms
- Prospective topics for institute collaboration
  - (Artificially) Intelligent gyrofluid closures
    - Use machine learning to train fluid closures from kinetic simulations
    - Starting with simple toy problem
    - Eventual application to GX code
  - Gkeyll:
    - Improve scalability of IO—issues beyond a few thousand cores. Want to discuss with ADIOS group.
    - Help with performance tuning.
    - Porting to GPU
    - Post-processing, visualization, in-situ analysis

