# Stability analysis of numerical interface conditions in coupled ocean-atmosphere models 

Hong Zhang (ANL), Paula Egging (UNL), Emil Constantinescu (ANL), Robert Jacob (ANL)

## Overview

Motivation
Current coupling algorithms for climate models are equivalent to performing a single step of an iterative procedure [Lemarie et al. 2015]. This may not be enough to ensure numerical stability.

Objectives

- Perform rigorous stability analysis of interface conditions for a variety of coupling algorithms
- Gain insight on how to improve the existing methods or propose new coupling schemes


## Model Exemplars: Q-GCM

The Quasi-Geostrophic Coupled Model

- Intermediate-complexity mid-latitude coupled climate model
- Candidate testbed for comparing different strategies and analyzing instability

Coupling mechanism

- Includes mixed layers to allow the exchange of heat flux and momentum
- At the interface, Ekman pumping drives momentum from atmosphere to ocean; latitudinal variations in solar radiation drives surface heat flux in both direction


Atmosphere
$30640 \mathrm{~km} \times 7600 \mathrm{~km}$

Surface Temperature for the double gyre example (6 months)

## Observations

- Running in the coupled mode, the ocean model stays stable with a timestep size of up to 40 minutes; running in the ocean-only mode, the timestep size can be larger ( $>72$ minutes)


## Interface Conditions

Practical assumptions

- Both components can be run simultaneously to promote task parallelism
- Ocean step size is a multiple of atmosphere step

Dirichlet-Neumann condition

$$
\begin{array}{ll} 
\begin{cases}\left\{^{+}+U^{+}=f^{+}\right. & \text {in } \Omega^{+} \times[0, \mathcal{T}] \\
U_{0}^{+}=U_{0}^{-} & \text {on } \Gamma \times[0, T]\end{cases} \\
\begin{cases}-U^{-} U^{-}=f^{-} & \text {in } \Omega^{-} \times[0, \mathcal{T}] \\
\mathcal{F}\left(U_{-}^{-}\right)=\mathcal{F}\left(U_{+}^{+}\right) & \text {on } \Gamma \times 0 \times \mathcal{T},\end{cases}
\end{array}
$$



Bulk interface condition $\left\{\begin{array}{l}\mathcal{L}^{+} U^{+}=f^{+} \quad \text { in } \Omega^{+} \times[0, \mathcal{T}] \\ { }^{+} \mathcal{T}\left(U^{+}\right)\end{array}\right.$ $\left\{\begin{array}{l}\rho^{+} \mathcal{F}\left(U^{+}\right)=\tau \quad \text { on } \Gamma \times[0, \tau]\end{array}\right.$ $\begin{cases}\mathcal{L}^{-} U^{-}=\mathcal{U}^{-} & \text {in } \Omega^{2 \times[0, \mathcal{T}]} \\ \rho^{-} \mathcal{F}\left(U^{-}\right)=\tau & \text { on } \Gamma \times[0, \mathcal{T}]\end{cases}$

Discretize for 1D Diffusion equation




## Normal Mode Analysis

For explicit Euler consider the solution

$$
A=1+d_{+}\left(k_{+}-2+k_{+}^{-1}\right)
$$

$U_{j}^{n}= \begin{cases}\mathcal{A}^{n} k_{k}^{j}, & j=0,-1,-2, \\ \mathcal{A}^{n} k_{+}^{j}, & j=1,2, \ldots .\end{cases}$
$A=1+2 d_{+} r_{+}\left(k_{+}-1\right)-2 d_{-} r_{-}\left(1-k_{-}^{-1}\right)$
$A=1+d_{-}\left(k_{-}-2+k_{-}^{-1}\right)$
Define $r_{ \pm}=\frac{\Delta z_{ \pm}}{\Delta z_{+}+\Delta z_{-}} d_{ \pm}=\frac{\nu_{ \pm} \Delta t}{\left(\Delta z_{ \pm}\right)^{2}}$
Solve for k and choose negative root $\quad 1=r_{+}\left(1-\sqrt{1+\frac{4 d_{+}}{\mathcal{A}-1}}\right)+r_{-}\left(1-\sqrt{1+\frac{4 d_{-}}{\mathcal{A}-1}}\right)$
Asymptotic solution of the requirement $|\mathcal{A}|<1$ yields - If $\Delta z_{-} \ll \Delta z_{+}$then $d_{+}<\frac{1}{2}$

- If $\Delta z_{+} \ll \Delta z_{-}$then $d_{-}<\frac{1}{2}$
- If $d_{ \pm} \gg 1$ then $\frac{\overline{\nu_{-}}}{\nu_{+}} \approx 1$

For backward Euler we have to use $U_{;, 0+}^{+, n+1}=U_{;, 0^{-}}^{-, n}$
Thus consider the solution

$$
U_{j}^{n}=\left\{\begin{array}{lll}
\mathcal{A}^{n} k^{j}, & j=0^{-},-1,-2, \ldots & \text { - If } \Delta z_{-} \ll \Delta z_{+} \text {the scheme is stable } \\
\mathcal{A}^{n-1} k_{+}^{j}, & j=0^{+}, 1,2, \ldots & \text { - Otherwise the scheme can be unstable }
\end{array}\right.
$$

Analysis on bulk interface conditions also implies additional constraints on step size

## Conclusions and Future Work

- Instability originates from interface
condition and the implementation
- Validated on an advection-diffusion model
- Extending to a passive tracer model
- Adding the iterative Schwarz method in

Q-GCM to improve the step size

