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Stability analysis of numerical interface conditions
in coupled ocean-atmosphere models
Hong Zhang (ANL), Paula Egging (UNL), Emil Constantinescu (ANL), Robert Jacob (ANL)

Motivation
Current coupling algorithms for climate models are equivalent to performing a single step of an
iterative procedure [Lemarie et al. 2015]. This may not be enough to ensure numerical stability. 

Objectives
• Perform rigorous stability analysis of interface conditions for a variety of coupling algorithms
• Gain insight on how to improve the existing methods or propose new coupling schemes

Overview

The Quasi-Geostrophic Coupled Model
• Intermediate-complexity mid-latitude 

coupled climate model
• Candidate testbed for comparing different 

strategies and analyzing instability

Coupling mechanism
• Includes mixed layers to allow the 

exchange of heat flux and momentum
• At the interface, Ekman pumping drives 

momentum from atmosphere to ocean; 
latitudinal variations in solar radiation drives 
surface heat flux in both direction

Model Exemplars: Q-GCMHogg, Blundell, Dewar & Killworth

2000 3000 4000 5000 6000 7000
-4

-2

0

2

4

6

8

10

Z 
(k

m
)

Y (km)

OCEAN LAYER 1
OCEAN MIXED LAYER

OCEAN LAYER 2

ATMOSPHERE
MIXED LAYER

ATMOSPHERE
     LAYER 1

ATMOSPHERE
     LAYER 2

INCOMING SOLAR
RADIATION

HEAT DISTRIBUTED 
INTERNALLY BY
RADIATION  AND

ENTRAINMENT

WIND STRESS
LEADS TO EKMAN 

PUMPING

EKMAN PUMPING

QUASI-GEOSTROPHIC
DYNAMICS

QUASI-GEOSTROPHIC
DYNAMICS

ENTRAINMENT

Figure 1: Schematic of (a two-layer version of) the Quasi-Geostrophic Coupled Model. This meridional
slice through the model shows the interface dividing the two QG dynamical layers in both the ocean and
the atmosphere. The mixed layers, shown by the shading which represents temperature, act to distribute
heat and momentum between the two domains. The model is driven by latitudinally varying solar forcing,
and by redistribution of heat by longwave radiation in the atmosphere.

and the mass conservation equation which we write as

⇢t + u⇢x + v⇢y + w⇢z = KH⇢xx +KH⇢yy +KV ⇢zz. (2.3)

To derive the quasi-geostrophic equations which govern the model dynamics, we simplify
(2.1)–(2.3). This could be done rigorously by first non-dimensionalising, and then by scaling
away less important terms, but it will su�ce for now to do this informally. For a more formal
treatment, see e.g. chapter 6 of Pedlosky (1987). We begin by assuming, for the purposes of
finding the zeroth order equations, that

1. Vertical velocity is small compared with horizontal velocities;

2. The Coriolis parameter is represented by the frozen �-plane approximation f(y) = f0 +
�(y � y0) where f0 represents the zeroth order e↵ect of rotation at the central latitude of
the domain (i.e. y = y0);

3. Di↵usion of momentum is dominated by pressure gradients.
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[source: Q-GCM user manual]

notation:  k – layer  number    a – atmosphere    o – ocean    
q – vorticity              p – pressure         e – entrainment   

Ocean

Atmosphere

4790 km X 4790 km

30640 km X 7600 km

Surface Temperature for the double gyre example (6 months)

Observations
• Running in the coupled mode, the ocean model stays stable with a timestep size of up to 

40 minutes; running in the ocean-only mode, the timestep size can be larger (>72 minutes)

Interface Conditions
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Figure 2. Node Configuration 1. The nodes on ⌦+ and ⌦� are such that they
overlap on the interface.
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Figure 3. Node Configuration 2. The nodes from ⌦+ covered the interface. For
the convenience of Dirichlet-Neumann condition.

1.3. Time Stepping Schemes and Discretization. The total simulation time [0, T ] is di-
vided up into N smaller time windows, say [ti, ti+1], so that [0, T ] = [N

i=1[ti, ti+1].

1.3.1. Forward Euler. One of the most basic time-stepping method is Forward Euler. To un-
derstand this method, let dy

dt = f(t, y(t)) be some ordinary di↵erential equation. Consider an

approximation of the equation y(t+�t)�y(t)
�t = f(t, y(t)). Supposing y(t) is known (as is frequently

the case with an initial value problem), one can solve for f(t+�t) = �tf(t, y(t)) + y(t).

Because one can calculate f(t+�t) explicitly, implementing Forward Euler is fairly straightfor-
ward. However, recall that in this coupled problem, ⌦� and ⌦+ may not have the same spacial
grid spacing. Therefore, in order to still respect the CFL condition (that is, �t

(�x)2 = c, for some

constant c), it was necessary to use di↵erent time steps on the di↵erent domains. Therefore, if
the grid spacing on ⌦+ is reduced by a factor of ratio, then the time steps on ⌦+ ought to be
reduced by a factor of 1

ratio2 .
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Thus, a discretized formulation of the coupled problem is:
(
L+U+ = f+ in ⌦+ ⇥ [0, T ]

U+
·,0 = Re�!+(U

�
·,0) on �⇥ [0, T ]

(
L�U� = f� in ⌦� ⇥ [0, T ]

U�
·,1 =

2�z�
�z+

�
Re+!�(U

+
·,1 � U+

·,0)
�
+ U�

·,�1. on �⇥ [0, T ]
.

Similar to the Dirichlet on ⌦� and Neumann on ⌦+ case, the interface nodes can also be
treated separately from the interior domain. An example of this treatment, with these interface
conditions, can be found in Section 4.

2.1.3. Exact Solution on both ⌦� and ⌦+ at Interface. When the nodes were configured as in
Node Configuration 1, with nodes from both ⌦� and ⌦+ lying on the interface, the ghost points
at the interface for each domain were chosen based on Dirichlet conditions dictated by the
manufactured solution. (This was mostly used to verify that other aspects of the code (such as
grid options and time stepping) were running properly.)

2.2. Bulk interface conditions. With the bulk interface conditions, we replace the require-
ment of continuity of the state at the interface with the requirement that the [MOMENTUM
OR FLUX?] be continuous at the interface, and further, equal to the surface wind stress. This
surface wind stress is typically determined using either time- or space- averages of observational
data, thus, giving it the name bulk.

The continuous formulation of this coupled problem is:

(
L+U+ = f+ in ⌦+ ⇥ [0, T ]

⇢+F(U+) = ⌧ on �⇥ [0, T ]
(
L�U� = f� in ⌦⇥[0, T ]

⇢�F(U�) = ⌧ on �⇥ [0, T ]

where ⌧ = ⇢+CD||�U ||�U is the surface wind stress, CD is an exchange coe�cient, ⇢+ and
⇢� are the densities of the respective fluids, and �U is the change in the state U across the
interface. In our case, we assumed CD = 64, ⇢± = ⌫±, and ||�U || = 1 [WHY??????].

Because the flux is specified on the interface �, we shift the grids into Node Configuration 4, so
the center of each row (center because that is where the flux is calculated) lies on the interface.

To implement these conditions, the ghost points for each domain were strategically chosen to
respect them. Discretizing the interface condition on ⌦+, we have

⇢+
U+
·, 12

� U+
·,� 1

2

�z+
= ⇢+CD(U

+
·, 12

� U�
·,� 1

2

).

Solving for the row of ghost points gives

U+
·,� 1

2

= �z+CD(U
+
·, 12

� U�
·,� 1

2

) + U+
·, 12
.

Similarly, discretizing the interface condition on ⌦�, we have

⇢�
U�
·, 12

� U�
·,� 1

2

�z�
= ⇢+CD(U

+
·, 12

� U�
·,� 1

2

).
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Bulk interface conditionDirichlet-Neumann condition

On the other hand, to implement a Neumann condition on ⌦+, we want to match the flux at
the interface. That is,

U+
·,�1 � U+

·,0

�z+
=

Re�!+(U
�
·,�1 � U�

·,0)

�z�
,

where Re�!+ uses interpolation to remap the grid on ⌦� to match the grid spacing on ⌦+.
Note that values for U+

·,1, U
�
·,0, and U�

·,�1 are all known. Thus, solving for U+
·,�1, we have

U+
·,�1 =

�z+
�z�

�
U�
·,�1 � U�

·,0
�
+ U+

·,0.

Thus, a discretized formulation of the coupled problem is:
(
L+U+ = f+ in ⌦+ ⇥ [0, T ]

U+
·,�1 =

�z+
�z�

Re�!+

�
U�
·,�1 � U�

·,0
�
+ U+

·,0. on �⇥ [0, T ]
(
L�U� = f� in ⌦� ⇥ [0, T ]

U�
·,0 = Re+!�(U

+
·,0) on �⇥ [0, T ]

.

Another way is to treat the interface nodes separately from the interior domain. In this case,
the solution on the interface nodes is propagated by computing the fluxes from both domains.
An similar example of this treatment, with slightly di↵erent interface conditions, can be found
in Section 4.

2.1.2. Neumann on ⌦� and Dirichlet on ⌦+ at Interface Using Ghost Points. If the nodes are
configured as in Node Configuration 3, we impose Dirichlet interface conditions on ⌦+ and
Neumann conditions on ⌦�.

With the same L+,L�, f+, f�, and F as before, the coupled problem is formulated as so:
(
L+U+ = f+ in ⌦+ ⇥ [0, T ]

U+
0 = U�

0 on �⇥ [0, T ]
(
L�U� = f� in ⌦� ⇥ [0, T ]

F(U�
0 ) = F(U+

0 ) on �⇥ [0, T ]
.

To implement these conditions using the ghost point method, the ghost points for each are
chosen to satisfy these interface conditions. Again, it is the continuity at the interface that
requires the ghost points for U+, the row U+

·,0, to equal the values of U�
·,0 (or the interpolated

values) for each i = 1, · · · , N+
x . That is, U+

·,0 = Re�!+(U
�
·,0).

On the other hand, to implement a Neumann condition on ⌦�, we again match the flux at the
interface. Note that, due to the grid configuration, we cannot use a first order upwind scheme
on both sides; rather, we must use centered finite di↵erences on ⌦�, which is known to be not
the greatest in this situation [EXPLAIN MORE HERE???]. Thus, matching fluxes, we have

U�
·,1 � U�

·,�1

2�z�
=

Re+!�(U
+
·,1 � U+

·,0)

�z+
,

where Re+!� remaps the grid on ⌦+ to match the grid spacing on ⌦�. Thus, solving for U�
·,1,

we have

U�
·,1 =

2�z�
�z+

�
Re+!�(U

+
·,1 � U+

·,0)
�
+ U�

·,�1.
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2
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2
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2
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·, 12
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·, 12
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◆
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2
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·,j+ 1

2

+
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·,j+ 3

2
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2
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2

⌘
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2
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2

+
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✓
⇢2
⇢1
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·, 12
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·,� 1

2

)� ⌫�
�z�

(U�,n
·,� 1

2

� U�,n
·,� 3

2

)

◆
, j = �1

(40)

Assuming a solution is of the form

Un
·,j+ 1

2
=

(
U�,n
·,j+ 1

2

= Ankj
�, j = �1,�2,�3, . . .

U+,n
·,j+ 1

2

= Ankj
+, j = 0, 1, 2, . . .

,

we then have the following system:

A = 1 + d+(k+ � 2 + k�1
+ ), j � 1

A = 1 + d+(k+ � 1)� �(1� k�1
� ), j = 0

A = 1 + d�(k� � 2 + k�1
� ), j  �2

A = 1 + �r(k� � 1)� d�(1� k�1
� ), j = �1,

(41)

where � = ↵ �t
�z+

, r = ⇢+�z+
⇢��z�

, and ⇢± is the density of the fluids in ⌦+ and ⌦�.

Solving the first and third equations for k+ and k�1
� , respectively, we have

(42) k+ = 1� 1�A
2d+

 
1 +

r
1� 4d+

1�A

!
= 1� p+(1 +

p
1� 2/p+)

and

(43) k�1
� = 1� 1�A

2d�

 
1 +

r
1� 4d�

1�A

!
= 1� p�(1 +

p
1� 2/p�),

where p± = 1�A
2d±

.

For z � 0, these are substituted into the equation corresponding to j = 0, which gives

A = 1 + d+
⇣
1� p+(1 +

p
1� 2/p+)� 1

⌘
� �(1� (1� p�(1 +

p
1� 2/p�)))

= 1� d+p+(1 +
p
1� 2/p+)� �p�(1 +

p
1� 2/p�).

(44)

To ensure stability, we need |A| < 1. Thus, it follows that

(45) �1 < 1� d+p+(1 +
p
1� 2/p+)� �p�(1 +

p
1� 2/p�) < 1,

which reduces to

(46) 0 < 2� (d+p+(1 +
p
1� 2/p+) + �p�(1 +

p
1� 2/p�)) < 2.

It follows that 0 < d+p+(1 +
p
1� 2/p+) + �p�(1 +

p
1� 2/p�) < 2.

Is this condition enough? What about possible complex values? We don’t even know the sign
of p± or if the square root is real or complex. Also, we haven’t explicitly solved for A in (34),
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U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n

·,j+1 � 2U�,n
·,j + U�,n

·,j�1)�
v�t

2�z�

�
U�,n
·,j+1 � U�,n

·,j�1

�
, j < 0,(5)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·, 12
�F�,n

·,� 1
2

⌘

(�z+ +�z�)/2
, where F is the total flux,(6)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n

·,j+1 � 2U+,n
·,j + U+,n

·,j�1)�
v�t

2�z+

�
U+,n
·,j+1 � U+,n

·,j�1

�
, j > 0.(7)

We define the constants r± = �z±
�z++�z�

, d± = ⌫±�t
(�z±)2 , and c± = v�t

2�z±
.

Also note that F+,n
·, 12

= ⌫+
U1�U0+

�z+
� v

�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
� v

�
1
2(U0� + U�1)

�
.

Dirichlet-Neumann Di↵usion with Forward Euler

As a special case of the Advection-Di↵usion Equation, we first consider the pure di↵usion equa-
tion with Dirichlet-Neumann interface conditions, using Forward Euler in time. We use the
following algorithm:

U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n

·,j+1 � 2U�,n
·,j + U�,n

·,j�1)�, j < 0(8)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·, 12
�F�,n

·,� 1
2

⌘

(�z+ +�z�)/2
, where F is the flux(9)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n

·,j+1 � 2U+,n
·,j + U+,n

·,j�1)�, j > 0(10)

In this case, F+,n
·, 12

= ⌫+
U1�U0+

�z+
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
.

Following the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Substituting this in, equations (8)-(10) become

A = 1 + d+(k+ � 2 + k�1
+ )(11)

A = 1 + 2d+r+(k+ � 1)� 2d�r�(1� k�1
� )(12)

A = 1 + d�(k� � 2 + k�1
� ).(13)

Solving (11) and (13) for k+ and k�1
� , respectively, and choosing the negative roots to satisfy

the far-field boundary conditions, we have k+ = 1 + A�1
2d+

⇣
1�

q
1 + 4d+

A�1

⌘
and k�1

� = 1 +

A�1
2d�

⇣
1�

q
1 + 4d�

A�1

⌘
. Plugging these into (12), it follows that

(14) A� 1 = 2d+r+

 
A� 1

2d+

 
1�

r
1 +

4d+
A� 1

!!
� 2d�r�

 
�A� 1

2d�

 
1�

r
1 +

4d�
A� 1

!!
,

which simplifies to

(15) 1 = r+

 
1�

r
1 +

4d+
A� 1

!
+ r�

 
1�

r
1 +

4d�
A� 1

!
.
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Dirichlet-Neumann Di↵usion with Forward Euler

As a special case of the Advection-Di↵usion Equation, we first consider the pure di↵usion equa-
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following algorithm:

U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n

·,j+1 � 2U�,n
·,j + U�,n

·,j�1)�, j < 0(8)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·, 12
� F�,n

·,� 1
2

⌘

(�z+ + �z�)/2
, where F is the flux(9)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n

·,j+1 � 2U+,n
·,j + U+,n

·,j�1)�, j > 0(10)

In this case, F+,n
·, 12

= ⌫+
U1�U0+

�z+
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
.

Following the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Substituting this in, equations (8)-(10) become

A = 1 + d+(k+ � 2 + k�1
+ )(11)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� )(12)

A = 1 + d�(k� � 2 + k�1
� )(13)

Solving (11) and (13) for k+ and k�1
� , respectively, and choosing the negative roots to satisfy

the far-field boundary conditions, we have k+ = 1 + A�1
2d+

⇣
1 �

q
1 + 4d+

A�1

⌘
and k�1

� = 1 +

A�1
2d�

⇣
1 �

q
1 + 4d�

A�1

⌘
. Plugging these into (12), it follows that

(14) A� 1 = 2d+r+

 
A � 1

2d+

 
1 �

r
1 +

4d+
A � 1

!!
� 2d�r�

 
�A � 1

2d�

 
1 �

r
1 +

4d�
A � 1

!!
,

which simplifies to

(15) 1 = r+

 
1 �

r
1 +

4d+
A � 1

!
+ r�

 
1 �

r
1 +

4d�
A � 1

!
.
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U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n

·,j+1 � 2U�,n
·,j + U�,n

·,j�1) � v�t

2�z�

�
U�,n
·,j+1 � U�,n

·,j�1

�
, j < 0,(5)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·, 12
� F�,n

·,� 1
2

⌘

(�z+ + �z�)/2
, where F is the total flux,(6)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n

·,j+1 � 2U+,n
·,j + U+,n

·,j�1) � v�t

2�z+

�
U+,n
·,j+1 � U+,n

·,j�1

�
, j > 0.(7)

We define the constants r± = �z±
�z++�z�

, d± = ⌫±�t
(�z±)2 , and c± = v�t

2�z±
.

Also note that F+,n
·, 12

= ⌫+
U1�U0+

�z+
� v

�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
� v

�
1
2(U0� + U�1)

�
.

Dirichlet-Neumann Di↵usion with Forward Euler

As a special case of the Advection-Di↵usion Equation, we first consider the pure di↵usion equa-
tion with Dirichlet-Neumann interface conditions, using Forward Euler in time. We use the
following algorithm:

U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n

·,j+1 � 2U�,n
·,j + U�,n

·,j�1)�, j < 0(8)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·, 12
� F�,n

·,� 1
2

⌘

(�z+ + �z�)/2
, where F is the flux(9)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n

·,j+1 � 2U+,n
·,j + U+,n

·,j�1)�, j > 0(10)

In this case, F+,n
·, 12

= ⌫+
U1�U0+

�z+
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
.

Following the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Substituting this in, equations (8)-(10) become

A = 1 + d+(k+ � 2 + k�1
+ )(11)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� )(12)

A = 1 + d�(k� � 2 + k�1
� )(13)

Solving (11) and (13) for k+ and k�1
� , respectively, and choosing the negative roots to satisfy

the far-field boundary conditions, we have k+ = 1 + A�1
2d+

⇣
1 �

q
1 + 4d+

A�1

⌘
and k�1

� = 1 +

A�1
2d�

⇣
1 �

q
1 + 4d�

A�1

⌘
. Plugging these into (12), it follows that

(14) A� 1 = 2d+r+

 
A � 1

2d+

 
1 �

r
1 +

4d+
A � 1

!!
� 2d�r�

 
�A � 1

2d�

 
1 �

r
1 +

4d�
A � 1

!!
,

which simplifies to

(15) 1 = r+

 
1 �

r
1 +

4d+
A � 1

!
+ r�

 
1 �

r
1 +

4d�
A � 1

!
.
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Discretize for 1D Diffusion equation

For explicit Euler consider the solution

U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n

·,j+1 � 2U�,n
·,j + U�,n

·,j�1) � v�t

2�z�

�
U�,n
·,j+1 � U�,n

·,j�1

�
, j < 0,(5)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·, 12
� F�,n

·,� 1
2

⌘

(�z+ + �z�)/2
, where F is the total flux,(6)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n

·,j+1 � 2U+,n
·,j + U+,n

·,j�1) � v�t

2�z+

�
U+,n
·,j+1 � U+,n

·,j�1

�
, j > 0.(7)

We define the constants r± = �z±
�z++�z�

, d± = ⌫±�t
(�z±)2 , and c± = v�t

2�z±
.

Also note that F+,n
·, 12

= ⌫+
U1�U0+

�z+
� v

�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
� v

�
1
2(U0� + U�1)

�
.

Dirichlet-Neumann Di↵usion with Forward Euler

As a special case of the Advection-Di↵usion Equation, we first consider the pure di↵usion equa-
tion with Dirichlet-Neumann interface conditions, using Forward Euler in time. We use the
following algorithm:

U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n

·,j+1 � 2U�,n
·,j + U�,n

·,j�1)�, j < 0(8)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·, 12
� F�,n

·,� 1
2

⌘

(�z+ + �z�)/2
, where F is the flux(9)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n

·,j+1 � 2U+,n
·,j + U+,n

·,j�1)�, j > 0(10)

In this case, F+,n
·, 12

= ⌫+
U1�U0+

�z+
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
.

Following the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Substituting this in, equations (8)-(10) become

A = 1 + d+(k+ � 2 + k�1
+ )(11)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� )(12)

A = 1 + d�(k� � 2 + k�1
� )(13)

Solving (11) and (13) for k+ and k�1
� , respectively, and choosing the negative roots to satisfy

the far-field boundary conditions, we have k+ = 1 + A�1
2d+

⇣
1 �

q
1 + 4d+

A�1

⌘
and k�1

� = 1 +

A�1
2d�

⇣
1 �

q
1 + 4d�

A�1

⌘
. Plugging these into (12), it follows that

(14) A� 1 = 2d+r+

 
A � 1

2d+

 
1 �

r
1 +

4d+
A � 1

!!
� 2d�r�

 
�A � 1

2d�

 
1 �

r
1 +

4d�
A � 1

!!
,

which simplifies to

(15) 1 = r+

 
1 �

r
1 +

4d+
A � 1

!
+ r�

 
1 �

r
1 +

4d�
A � 1

!
.
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U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n

·,j+1 � 2U�,n
·,j + U�,n

·,j�1) � v�t

2�z�

�
U�,n
·,j+1 � U�,n

·,j�1

�
, j < 0,(5)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·, 12
� F�,n

·,� 1
2

⌘

(�z+ + �z�)/2
, where F is the total flux,(6)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n

·,j+1 � 2U+,n
·,j + U+,n

·,j�1) � v�t

2�z+

�
U+,n
·,j+1 � U+,n

·,j�1

�
, j > 0.(7)

We define the constants r± = �z±
�z++�z�

, d± = ⌫±�t
(�z±)2 , and c± = v�t

2�z±
.

Also note that F+,n
·, 12

= ⌫+
U1�U0+

�z+
� v

�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
� v

�
1
2(U0� + U�1)

�
.

Dirichlet-Neumann Di↵usion with Forward Euler

As a special case of the Advection-Di↵usion Equation, we first consider the pure di↵usion equa-
tion with Dirichlet-Neumann interface conditions, using Forward Euler in time. We use the
following algorithm:

U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n

·,j+1 � 2U�,n
·,j + U�,n

·,j�1)�, j < 0(8)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·, 12
� F�,n

·,� 1
2

⌘

(�z+ + �z�)/2
, where F is the flux(9)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n

·,j+1 � 2U+,n
·,j + U+,n

·,j�1)�, j > 0(10)

In this case, F+,n
·, 12

= ⌫+
U1�U0+

�z+
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
.

Following the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Substituting this in, equations (8)-(10) become

A = 1 + d+(k+ � 2 + k�1
+ )(11)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� )(12)

A = 1 + d�(k� � 2 + k�1
� )(13)

Solving (11) and (13) for k+ and k�1
� , respectively, and choosing the negative roots to satisfy

the far-field boundary conditions, we have k+ = 1 + A�1
2d+

⇣
1 �

q
1 + 4d+

A�1

⌘
and k�1

� = 1 +

A�1
2d�

⇣
1 �

q
1 + 4d�

A�1

⌘
. Plugging these into (12), it follows that

(14) A� 1 = 2d+r+

 
A � 1

2d+

 
1 �

r
1 +

4d+
A � 1

!!
� 2d�r�

 
�A � 1

2d�

 
1 �

r
1 +

4d�
A � 1

!!
,

which simplifies to

(15) 1 = r+

 
1 �

r
1 +

4d+
A � 1

!
+ r�

 
1 �

r
1 +

4d�
A � 1

!
.
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Define

Solve for k and choose negative root

Asymptotic solution of the requirement               yields

For backward Euler we have to use
Thus consider the solution

There is not a nice, closed form solution giving us A explicitly. Instead, we consider the case
where di↵usion is the dominant behavior, as is often the case in the ocean-atmosphere scenario.
Under this assumption, it follows that d± � c± and this approximation corresponds to the pure
di↵usion case in equation (15). The same asymptotic solutions can be considered, with the same
results.

4.1.2. Implicit time stepping and normal node analysis. Using the same derivation as above,
with centered finite di↵erencing on the interior of the domains, but this time applying Backward
Euler in time, gives rise to the algorithm:

U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n+1

·,j+1 � 2U�,n+1
·,j + U�,n+1

·,j�1 )� v�t

2�z�

�
U�,n+1
·,j+1 � U�,n+1

·,j�1

�
, j < 0

(22)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·,1/2 �F�,n+1
·,�1/2

⌘

(�z+ +�z�)/2
, where F is the total flux,

(23)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n+1

·,j+1 � 2U+,n+1
·,j + U+,n+1

·,j�1 )� v�t

2�z+

�
U+,n+1
·,j+1 � U+,n+1

·,j�1

�
, j > 0

(24)

U+,n+1
·,0 = U�,n

·,0 .(25)

Dirichlet-Neumann Di↵usion with Backward Euler As a special case of this, first consider
these Dirichlet-Neumann conditions on the di↵usion equation alone, using Backward Euler in
time.

In this case, we have the following algorithm:

U�,n+1
·,j = U�,n

·,j +

✓
⌫��t

(�z�)2

◆
(U�,n+1

·,j+1 � 2U�,n+1
·,j + U�,n+1

·,j�1 ), j < 0(26)

U�,n+1
·,0� = U�,n

·,0� +
�t

(�z+ +�z�)/2

✓
⌫+
�z+

(Un
1 � Un

0+)�
⌫�
�z�

(Un+1
0� � Un+1

�1 )

◆
,(27)

U+,n+1
·,j = U+,n

·,j +

✓
⌫+�t

(�z+)2

◆
(U+,n+1

·,j+1 � 2U+,n+1
·,j + U+,n+1

·,j�1 ), j > 0(28)

U+,n+1
·,0+ = U�,n

·,0� .(29)

Using the same constants r± and d± as in Section 4.1.1, and assuming a solution is of the form

Un
j =

(
Ankj

�, j = 0�,�1,�2, . . .

An�1kj
+, j = 0+, 1, 2, . . .

,

note that the fourth equation is automatically satisfied by this choice of normal mode.

The other three equations require that A, k�, and k+ satisfy

1 = A�1 + d+(k� � 2 + k�1
� )

1 = A�1 + 2d+r+(A�2)(k+ � 1)� 2d�r�(1� k�1
� )

1 = A�1 + d+(k+ � 2 + k�1
+ ).

(30)

12

• If                             then
• If                             then
• If                             then

Now consider some asymptotic solutions to this equation.

• If �z� ⌧ �z+, then r+ ⇡ 1 and r� ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d+

A�1 . The

requirement that |A| < 1, implies that 0 < d+ < 1
2 .

• If �z+ ⌧ �z�, then r� ⇡ 1 and r+ ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d�

A�1 . The

requirement that |A| < 1, implies that 0 < d� < 1
2 .

• If d± � 1, then 1 �
q

1 + 4d±
A�1 ⇡ �

q
4d±
A�1 and the 1 on the left hand side is small.

Thus, we have �r+
q

4d+

A�1 ⇡ r�
q

4d�
A�1 . Squaring both sides gives r2+

⇣
4d+

A�1

⌘
⇡ r2�

⇣
4d�
A�1

⌘
.

Noting that the A’s cancel out, we have the condition ⌫�
⌫+

⇡ 1.

Dirichlet-Neumann Advection-Di↵usion with Forward Euler

We now proceed with a normal node analysis on the discretization scheme of the full two-
dimensional Advection-Di↵usion equation given by equations [MAYBE CHANGE NUMBS](5)�
(7). Here, note that F+,n

·, 12
= ⌫+

U1�U0+

�z+
�v
�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
�v
�
1
2(U0� + U�1)

�
.

Again, using the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Under this assumption and after some algebra, equations [MAYBE CHANGE](5)� (7) become

A = 1 + d+(k+ � 2� k�1
+ )� c+(k+ � k�1

+ )(16)

A = 1 + 2d+r+(k+ � 1)� 2d�r�(1� k�1
� )� (c+r+ + c�r�)(k+ � k�1

� )

= 1 + [(2d+r+ � 2c+r+)k+ � 2d+r+] + [(2c�r� + 2d�r�)k
�1
� � 2d�r�]

(17)

A = 1 + d�(k� � 2 + d�1
� )� c�(k� � k�1

� ).(18)

Solving (18) for k�1
� , we find

(19) k�1
� = 1� 2c�

2(d� + c�)
� 1�A

2(d� + c�)

"
1±

s

1� 4d�
1�A +

4c2�
(1�A)2

#
.

To satisfy the far field boundary conditions, we choose the negative square root for k�1
� .

Similarly, solving (16) for k+ and choosing the negative square root, we find

(20) k+ = 1� 2c+
2(c+ � d+)

+
1�A

2(c+ � d+)

"
1�

s

1� 4d+
1�A +

4c2+
(1�A)2

#
.

Taking these and plugging them into (9), we have

A� 1 =

"
(2r+d+ � 2c+r+)

 
1� c+

c+ � d+
+

1�A
2(c+ � d+)

 
1�

s

1� 4d+
1�A +

4c2+
(1�A)2

!!
� 2d+r+

#

+

"
(2r�d� + 2r�c�)

 
1� c�

d� + c�
� 1�A

2(d� + c�)

 
1�

s

1� 4d�
1�A +

4c2�
(1�A)2

!!
� 2d�r�

#

(21)
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Now consider some asymptotic solutions to this equation.

• If �z� ⌧ �z+, then r+ ⇡ 1 and r� ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d+

A�1 . The

requirement that |A| < 1, implies that 0 < d+ < 1
2 .

• If �z+ ⌧ �z�, then r� ⇡ 1 and r+ ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d�

A�1 . The

requirement that |A| < 1, implies that 0 < d� < 1
2 .

• If d± � 1, then 1 �
q

1 + 4d±
A�1 ⇡ �

q
4d±
A�1 and the 1 on the left hand side is small.

Thus, we have �r+
q

4d+

A�1 ⇡ r�
q

4d�
A�1 . Squaring both sides gives r2+

⇣
4d+

A�1

⌘
⇡ r2�

⇣
4d�
A�1

⌘
.

Noting that the A’s cancel out, we have the condition ⌫�
⌫+

⇡ 1.

Dirichlet-Neumann Advection-Di↵usion with Forward Euler

We now proceed with a normal node analysis on the discretization scheme of the full two-
dimensional Advection-Di↵usion equation given by equations [MAYBE CHANGE NUMBS](5)�
(7). Here, note that F+,n

·, 12
= ⌫+

U1�U0+

�z+
�v
�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
�v
�
1
2(U0� + U�1)

�
.

Again, using the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Under this assumption and after some algebra, equations [MAYBE CHANGE](5)� (7) become

A = 1 + d+(k+ � 2 � k�1
+ ) � c+(k+ � k�1

+ )(16)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� ) � (c+r+ + c�r�)(k+ � k�1
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� 1 � A

2(d� + c�)

"
1±

s

1 � 4d�
1 � A +

4c2�
(1 � A)2

#
.

To satisfy the far field boundary conditions, we choose the negative square root for k�1
� .

Similarly, solving (16) for k+ and choosing the negative square root, we find

(20) k+ = 1 � 2c+
2(c+ � d+)

+
1 � A

2(c+ � d+)

"
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2

#
.

Taking these and plugging them into (9), we have

A � 1 =

"
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+
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2(c+ � d+)

 
1 �
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1 �
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� 2d�r�

#
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Now consider some asymptotic solutions to this equation.

• If �z� ⌧ �z+, then r+ ⇡ 1 and r� ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d+

A�1 . The

requirement that |A| < 1, implies that 0 < d+ < 1
2 .

• If �z+ ⌧ �z�, then r� ⇡ 1 and r+ ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d�
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2 .
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q

1 + 4d±
A�1 ⇡ �

q
4d±
A�1 and the 1 on the left hand side is small.
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q

4d+

A�1 ⇡ r�
q

4d�
A�1 . Squaring both sides gives r2+

⇣
4d+

A�1

⌘
⇡ r2�

⇣
4d�
A�1

⌘
.

Noting that the A’s cancel out, we have the condition ⌫�
⌫+

⇡ 1.

Dirichlet-Neumann Advection-Di↵usion with Forward Euler

We now proceed with a normal node analysis on the discretization scheme of the full two-
dimensional Advection-Di↵usion equation given by equations [MAYBE CHANGE NUMBS](5)�
(7). Here, note that F+,n

·, 12
= ⌫+

U1�U0+

�z+
�v
�
1
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and F�,n

·,� 1
2
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.

Again, using the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Under this assumption and after some algebra, equations [MAYBE CHANGE](5)� (7) become

A = 1 + d+(k+ � 2 � k�1
+ ) � c+(k+ � k�1

+ )(16)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� ) � (c+r+ + c�r�)(k+ � k�1

� )
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(17)

A = 1 + d�(k� � 2 + d�1
� ) � c�(k� � k�1

� ).(18)

Solving (18) for k�1
� , we find
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2(d� + c�)
� 1 � A

2(d� + c�)

"
1±

s

1 � 4d�
1 � A +

4c2�
(1 � A)2

#
.

To satisfy the far field boundary conditions, we choose the negative square root for k�1
� .

Similarly, solving (16) for k+ and choosing the negative square root, we find

(20) k+ = 1 � 2c+
2(c+ � d+)

+
1 � A

2(c+ � d+)

"
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2

#
.

Taking these and plugging them into (9), we have

A � 1 =

"
(2r+d+ � 2c+r+)

 
1 � c+

c+ � d+
+

1 � A
2(c+ � d+)

 
1 �
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1 � 4d+
1 � A +
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(1 � A)2
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Now consider some asymptotic solutions to this equation.

• If �z� ⌧ �z+, then r+ ⇡ 1 and r� ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d+

A�1 . The

requirement that |A| < 1, implies that 0 < d+ < 1
2 .

• If �z+ ⌧ �z�, then r� ⇡ 1 and r+ ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d�

A�1 . The

requirement that |A| < 1, implies that 0 < d� < 1
2 .

• If d± � 1, then 1 �
q

1 + 4d±
A�1 ⇡ �

q
4d±
A�1 and the 1 on the left hand side is small.

Thus, we have �r+
q

4d+

A�1 ⇡ r�
q

4d�
A�1 . Squaring both sides gives r2+

⇣
4d+

A�1

⌘
⇡ r2�

⇣
4d�
A�1

⌘
.

Noting that the A’s cancel out, we have the condition ⌫�
⌫+

⇡ 1.

Dirichlet-Neumann Advection-Di↵usion with Forward Euler

We now proceed with a normal node analysis on the discretization scheme of the full two-
dimensional Advection-Di↵usion equation given by equations [MAYBE CHANGE NUMBS](5)�
(7). Here, note that F+,n

·, 12
= ⌫+

U1�U0+

�z+
�v
�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
�v
�
1
2(U0� + U�1)

�
.

Again, using the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Under this assumption and after some algebra, equations [MAYBE CHANGE](5)� (7) become

A = 1 + d+(k+ � 2 � k�1
+ ) � c+(k+ � k�1

+ )(16)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� ) � (c+r+ + c�r�)(k+ � k�1

� )

= 1 + [(2d+r+ � 2c+r+)k+ � 2d+r+] + [(2c�r� + 2d�r�)k
�1
� � 2d�r�]

(17)

A = 1 + d�(k� � 2 + d�1
� ) � c�(k� � k�1

� ).(18)

Solving (18) for k�1
� , we find

(19) k�1
� = 1 � 2c�

2(d� + c�)
� 1 � A

2(d� + c�)

"
1±

s

1 � 4d�
1 � A +

4c2�
(1 � A)2

#
.

To satisfy the far field boundary conditions, we choose the negative square root for k�1
� .

Similarly, solving (16) for k+ and choosing the negative square root, we find

(20) k+ = 1 � 2c+
2(c+ � d+)

+
1 � A

2(c+ � d+)

"
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2

#
.

Taking these and plugging them into (9), we have

A � 1 =

"
(2r+d+ � 2c+r+)

 
1 � c+

c+ � d+
+

1 � A
2(c+ � d+)

 
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2
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� 2d+r+

#

+

"
(2r�d� + 2r�c�)

 
1 � c�

d� + c�
� 1 � A
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1 �

s

1 � 4d�
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(1 � A)2
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#
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Now consider some asymptotic solutions to this equation.

• If �z� ⌧ �z+, then r+ ⇡ 1 and r� ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d+

A�1 . The

requirement that |A| < 1, implies that 0 < d+ < 1
2 .

• If �z+ ⌧ �z�, then r� ⇡ 1 and r+ ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d�

A�1 . The

requirement that |A| < 1, implies that 0 < d� < 1
2 .

• If d± � 1, then 1 �
q

1 + 4d±
A�1 ⇡ �

q
4d±
A�1 and the 1 on the left hand side is small.

Thus, we have �r+
q

4d+

A�1 ⇡ r�
q

4d�
A�1 . Squaring both sides gives r2+

⇣
4d+

A�1

⌘
⇡ r2�

⇣
4d�
A�1

⌘
.

Noting that the A’s cancel out, we have the condition ⌫�
⌫+

⇡ 1.

Dirichlet-Neumann Advection-Di↵usion with Forward Euler

We now proceed with a normal node analysis on the discretization scheme of the full two-
dimensional Advection-Di↵usion equation given by equations [MAYBE CHANGE NUMBS](5)�
(7). Here, note that F+,n

·, 12
= ⌫+

U1�U0+

�z+
�v
�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
�v
�
1
2(U0� + U�1)

�
.

Again, using the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Under this assumption and after some algebra, equations [MAYBE CHANGE](5)� (7) become

A = 1 + d+(k+ � 2 � k�1
+ ) � c+(k+ � k�1

+ )(16)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� ) � (c+r+ + c�r�)(k+ � k�1

� )

= 1 + [(2d+r+ � 2c+r+)k+ � 2d+r+] + [(2c�r� + 2d�r�)k
�1
� � 2d�r�]

(17)

A = 1 + d�(k� � 2 + d�1
� ) � c�(k� � k�1

� ).(18)

Solving (18) for k�1
� , we find

(19) k�1
� = 1 � 2c�

2(d� + c�)
� 1 � A

2(d� + c�)

"
1±

s

1 � 4d�
1 � A +

4c2�
(1 � A)2

#
.

To satisfy the far field boundary conditions, we choose the negative square root for k�1
� .

Similarly, solving (16) for k+ and choosing the negative square root, we find

(20) k+ = 1 � 2c+
2(c+ � d+)

+
1 � A

2(c+ � d+)

"
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2

#
.

Taking these and plugging them into (9), we have

A � 1 =

"
(2r+d+ � 2c+r+)

 
1 � c+

c+ � d+
+

1 � A
2(c+ � d+)

 
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2
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� 2d+r+

#

+

"
(2r�d� + 2r�c�)

 
1 � c�

d� + c�
� 1 � A
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s
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#
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Now consider some asymptotic solutions to this equation.

• If �z� ⌧ �z+, then r+ ⇡ 1 and r� ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d+

A�1 . The

requirement that |A| < 1, implies that 0 < d+ < 1
2 .

• If �z+ ⌧ �z�, then r� ⇡ 1 and r+ ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d�

A�1 . The

requirement that |A| < 1, implies that 0 < d� < 1
2 .

• If d± � 1, then 1 �
q

1 + 4d±
A�1 ⇡ �

q
4d±
A�1 and the 1 on the left hand side is small.

Thus, we have �r+
q

4d+

A�1 ⇡ r�
q

4d�
A�1 . Squaring both sides gives r2+

⇣
4d+

A�1

⌘
⇡ r2�

⇣
4d�
A�1

⌘
.

Noting that the A’s cancel out, we have the condition ⌫�
⌫+

⇡ 1.

Dirichlet-Neumann Advection-Di↵usion with Forward Euler

We now proceed with a normal node analysis on the discretization scheme of the full two-
dimensional Advection-Di↵usion equation given by equations [MAYBE CHANGE NUMBS](5)�
(7). Here, note that F+,n

·, 12
= ⌫+

U1�U0+

�z+
�v
�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
�v
�
1
2(U0� + U�1)

�
.

Again, using the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Under this assumption and after some algebra, equations [MAYBE CHANGE](5)� (7) become

A = 1 + d+(k+ � 2 � k�1
+ ) � c+(k+ � k�1

+ )(16)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� ) � (c+r+ + c�r�)(k+ � k�1

� )

= 1 + [(2d+r+ � 2c+r+)k+ � 2d+r+] + [(2c�r� + 2d�r�)k
�1
� � 2d�r�]

(17)

A = 1 + d�(k� � 2 + d�1
� ) � c�(k� � k�1

� ).(18)

Solving (18) for k�1
� , we find

(19) k�1
� = 1 � 2c�

2(d� + c�)
� 1 � A

2(d� + c�)

"
1±

s

1 � 4d�
1 � A +

4c2�
(1 � A)2

#
.

To satisfy the far field boundary conditions, we choose the negative square root for k�1
� .

Similarly, solving (16) for k+ and choosing the negative square root, we find

(20) k+ = 1 � 2c+
2(c+ � d+)

+
1 � A

2(c+ � d+)

"
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2

#
.

Taking these and plugging them into (9), we have

A � 1 =

"
(2r+d+ � 2c+r+)

 
1 � c+

c+ � d+
+

1 � A
2(c+ � d+)

 
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2
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� 2d+r+

#

+

"
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Now consider some asymptotic solutions to this equation.

• If �z� ⌧ �z+, then r+ ⇡ 1 and r� ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d+

A�1 . The

requirement that |A| < 1, implies that 0 < d+ < 1
2 .

• If �z+ ⌧ �z�, then r� ⇡ 1 and r+ ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d�

A�1 . The

requirement that |A| < 1, implies that 0 < d� < 1
2 .

• If d± � 1, then 1 �
q

1 + 4d±
A�1 ⇡ �

q
4d±
A�1 and the 1 on the left hand side is small.

Thus, we have �r+
q

4d+

A�1 ⇡ r�
q

4d�
A�1 . Squaring both sides gives r2+

⇣
4d+

A�1

⌘
⇡ r2�

⇣
4d�
A�1

⌘
.

Noting that the A’s cancel out, we have the condition ⌫�
⌫+

⇡ 1.

Dirichlet-Neumann Advection-Di↵usion with Forward Euler

We now proceed with a normal node analysis on the discretization scheme of the full two-
dimensional Advection-Di↵usion equation given by equations [MAYBE CHANGE NUMBS](5)�
(7). Here, note that F+,n

·, 12
= ⌫+

U1�U0+

�z+
�v
�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
�v
�
1
2(U0� + U�1)

�
.

Again, using the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Under this assumption and after some algebra, equations [MAYBE CHANGE](5)� (7) become

A = 1 + d+(k+ � 2 � k�1
+ ) � c+(k+ � k�1

+ )(16)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� ) � (c+r+ + c�r�)(k+ � k�1

� )

= 1 + [(2d+r+ � 2c+r+)k+ � 2d+r+] + [(2c�r� + 2d�r�)k
�1
� � 2d�r�]

(17)

A = 1 + d�(k� � 2 + d�1
� ) � c�(k� � k�1

� ).(18)

Solving (18) for k�1
� , we find

(19) k�1
� = 1 � 2c�

2(d� + c�)
� 1 � A

2(d� + c�)

"
1±

s

1 � 4d�
1 � A +

4c2�
(1 � A)2

#
.

To satisfy the far field boundary conditions, we choose the negative square root for k�1
� .

Similarly, solving (16) for k+ and choosing the negative square root, we find

(20) k+ = 1 � 2c+
2(c+ � d+)

+
1 � A

2(c+ � d+)

"
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2

#
.

Taking these and plugging them into (9), we have

A � 1 =

"
(2r+d+ � 2c+r+)

 
1 � c+

c+ � d+
+

1 � A
2(c+ � d+)

 
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2
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+
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• If                     the scheme is stable
• Otherwise the scheme can be unstable                           

Now consider some asymptotic solutions to this equation.

• If �z� ⌧ �z+, then r+ ⇡ 1 and r� ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d+

A�1 . The

requirement that |A| < 1, implies that 0 < d+ < 1
2 .

• If �z+ ⌧ �z�, then r� ⇡ 1 and r+ ⇡ 0. Thus, we have 1 ⇡ 1 �
q
1 + 4d�

A�1 . The

requirement that |A| < 1, implies that 0 < d� < 1
2 .

• If d± � 1, then 1 �
q

1 + 4d±
A�1 ⇡ �

q
4d±
A�1 and the 1 on the left hand side is small.

Thus, we have �r+
q

4d+

A�1 ⇡ r�
q

4d�
A�1 . Squaring both sides gives r2+

⇣
4d+

A�1

⌘
⇡ r2�

⇣
4d�
A�1

⌘
.

Noting that the A’s cancel out, we have the condition ⌫�
⌫+

⇡ 1.

Dirichlet-Neumann Advection-Di↵usion with Forward Euler

We now proceed with a normal node analysis on the discretization scheme of the full two-
dimensional Advection-Di↵usion equation given by equations [MAYBE CHANGE NUMBS](5)�
(7). Here, note that F+,n

·, 12
= ⌫+

U1�U0+

�z+
�v
�
1
2(U1 + U0+)

�
and F�,n

·,� 1
2

= ⌫�
U0��U�1

�z�
�v
�
1
2(U0� + U�1)

�
.

Again, using the explicit methods of [Giles, 1997], we assume a solution has the form

Un
j =

(
Ankj

�, j = 0,�1,�2, . . .

Ankj
+, j = 1, 2, . . . .

Under this assumption and after some algebra, equations [MAYBE CHANGE](5)� (7) become

A = 1 + d+(k+ � 2 � k�1
+ ) � c+(k+ � k�1

+ )(16)

A = 1 + 2d+r+(k+ � 1) � 2d�r�(1 � k�1
� ) � (c+r+ + c�r�)(k+ � k�1

� )

= 1 + [(2d+r+ � 2c+r+)k+ � 2d+r+] + [(2c�r� + 2d�r�)k
�1
� � 2d�r�]

(17)

A = 1 + d�(k� � 2 + d�1
� ) � c�(k� � k�1

� ).(18)

Solving (18) for k�1
� , we find
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.

To satisfy the far field boundary conditions, we choose the negative square root for k�1
� .

Similarly, solving (16) for k+ and choosing the negative square root, we find

(20) k+ = 1 � 2c+
2(c+ � d+)

+
1 � A

2(c+ � d+)

"
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2

#
.

Taking these and plugging them into (9), we have

A � 1 =

"
(2r+d+ � 2c+r+)

 
1 � c+

c+ � d+
+

1 � A
2(c+ � d+)

 
1 �

s

1 � 4d+
1 � A +

4c2+
(1 � A)2

!!
� 2d+r+

#

+

"
(2r�d� + 2r�c�)

 
1 � c�

d� + c�
� 1 � A

2(d� + c�)

 
1 �

s

1 � 4d�
1 � A +

4c2�
(1 � A)2

!!
� 2d�r�

#

(21)
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Practical assumptions
• Both components can be run simultaneously to 

promote task parallelism
• Ocean step size is a multiple of atmosphere step

There is not a nice, closed form solution giving us A explicitly. Instead, we consider the case
where di↵usion is the dominant behavior, as is often the case in the ocean-atmosphere scenario.
Under this assumption, it follows that d± � c± and this approximation corresponds to the pure
di↵usion case in equation (15). The same asymptotic solutions can be considered, with the same
results.

4.1.2. Implicit time stepping and normal node analysis. Using the same derivation as above,
with centered finite di↵erencing on the interior of the domains, but this time applying Backward
Euler in time, gives rise to the algorithm:

U�,n+1
·,j � U�,n

·,j =

✓
⌫��t

(�z�)2

◆
(U�,n+1

·,j+1 � 2U�,n+1
·,j + U�,n+1

·,j�1 ) � v�t

2�z�

�
U�,n+1
·,j+1 � U�,n+1

·,j�1

�
, j < 0

(22)

U�,n+1
·,0 � U�,n

·,0 = �t

⇣
F+,n

·,1/2 � F�,n+1
·,�1/2

⌘

(�z+ + �z�)/2
, where F is the total flux,

(23)

U+,n+1
·,j � U+,n

·,j =

✓
⌫+�t

(�z+)2

◆
(U+,n+1

·,j+1 � 2U+,n+1
·,j + U+,n+1

·,j�1 ) � v�t

2�z+

�
U+,n+1
·,j+1 � U+,n+1

·,j�1

�
, j > 0

(24)

U+,n+1
·,0 = U�,n

·,0 .(25)

Dirichlet-Neumann Di↵usion with Backward Euler As a special case of this, first consider
these Dirichlet-Neumann conditions on the di↵usion equation alone, using Backward Euler in
time.

In this case, we have the following algorithm:

U�,n+1
·,j = U�,n

·,j +

✓
⌫��t

(�z�)2

◆
(U�,n+1

·,j+1 � 2U�,n+1
·,j + U�,n+1

·,j�1 ), j < 0(26)

U�,n+1
·,0� = U�,n

·,0� +
�t

(�z+ + �z�)/2

✓
⌫+

�z+
(Un

1 � Un
0+) � ⌫�

�z�
(Un+1

0� � Un+1
�1 )

◆
,(27)

U+,n+1
·,j = U+,n

·,j +

✓
⌫+�t

(�z+)2

◆
(U+,n+1

·,j+1 � 2U+,n+1
·,j + U+,n+1

·,j�1 ), j > 0(28)

U+,n+1
·,0+ = U�,n

·,0� .(29)

Using the same constants r± and d± as in Section 4.1.1, and assuming a solution is of the form

Un
j =

(
Ankj

�, j = 0�,�1,�2, . . .

An�1kj
+, j = 0+, 1, 2, . . .

,

note that the fourth equation is automatically satisfied by this choice of normal mode.

The other three equations require that A, k�, and k+ satisfy

1 = A�1 + d+(k� � 2 + k�1
� )

1 = A�1 + 2d+r+(A�2)(k+ � 1) � 2d�r�(1 � k�1
� )

1 = A�1 + d+(k+ � 2 + k�1
+ ).

(30)
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Analysis on bulk interface conditions also implies additional constraints on step size  

Contact: Hong Zhang  hongzhang@anl.gov

Conclusions and Future Work
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• Instability originates from interface 
condition and the implementation

• Validated on an advection-diffusion model
• Extending to a passive tracer model
• Adding the iterative Schwarz method in  

Q-GCM to improve the step size


