Stability analysis of numerical interface conditions

in coupled ocean-atmosphere models Hong Zhang (ANL), Paula Egging (UNL), Emil Constantinescu (ANL), Robert Jacob (ANL) CANGA

Overview

Motivation

Current coupling algorithms for climate models are equivalent to performing a single step of an iterative procedure [Lemarie et al. 2015]. This may not be enough to ensure numerical stability.

Interface Conditions

Practical assumptions

- Both components can be run simultaneously to promote task parallelism
- Ocean step size is a multiple of atmosphere step

Objectives

- Perform rigorous stability analysis of interface conditions for a variety of coupling algorithms
- Gain insight on how to improve the existing methods or propose new coupling schemes

Model Exemplars: Q-GCM

The Quasi-Geostrophic Coupled Model

- Intermediate-complexity mid-latitude coupled climate model
- Candidate testbed for comparing different strategies and analyzing instability

Coupling mechanism

Includes mixed layers to allow the

- exchange of heat flux and momentum
- At the interface, Ekman pumping drives momentum from atmosphere to ocean; latitudinal variations in solar radiation drives surface heat flux in both direction

notation: k – layer number a – atmosphere o – ocean e – entrainment q – vorticity

$${}^{a}T_{mt} + ({}^{a}u_{m} \, {}^{a}T_{m})_{x} + ({}^{a}v_{m} \, {}^{a}T_{m})_{y} + \frac{{}^{a}w_{ek} \, {}^{a}T_{m}}{{}^{a}H_{m}} = {}^{a}K_{2}\nabla_{H}^{2} \, {}^{a}T_{m} - {}^{a}K_{4}\nabla_{H}^{4} \, {}^{a}T_{m} + \frac{-{}^{a}F_{m} + {}^{a}F_{0}}{{}^{a}\rho \, {}^{a}C_{p} \, {}^{a}h_{m}}$$
$${}^{o}T_{mt} + ({}^{o}u_{m} \, {}^{o}T_{m})_{x} + ({}^{o}v_{m} \, {}^{o}T_{m})_{y} + \frac{{}^{o}w_{ek} \, {}^{o}T_{m}}{{}^{o}H_{m}} = {}^{o}K_{2}\nabla_{H}^{2} \, {}^{o}T_{m} - {}^{o}K_{4}\nabla_{H}^{4} \, {}^{o}T_{m} + \frac{-{}^{o}F_{m} + {}^{o}F_{0}}{{}^{o}\rho \, {}^{o}C_{p} \, {}^{o}H_{m}}$$

For explicit Euler consider the solution

- $U_{j}^{n} = \begin{cases} \mathcal{A}^{n} k_{-}^{j}, & j = 0, -1, -2, \dots \\ \mathcal{A}^{n} k_{+}^{j}, & j = 1, 2, \dots \end{cases}$
- Define $r_{\pm} = \frac{\Delta z_{\pm}}{\Delta z_{\pm} + \Delta z_{-}} d_{\pm} = \frac{\nu_{\pm} \Delta t}{(\Delta z_{\pm})^2}$

 $A = 1 + d_{+}(k_{+} - 2 + k_{+}^{-1})$ $A = 1 + 2d_{+}r_{+}(k_{+} - 1) - 2d_{-}r_{-}(1 - k_{-}^{-1})$ $A = 1 + d_{-}(k_{-} - 2 + k_{-}^{-1})$

Solve for k and choose negative root $1 = r_+ \left(1 - \sqrt{1 + \frac{4d_+}{A - 1}} \right) + r_- \left(1 - \sqrt{1 + \frac{4d_-}{A - 1}} \right)$

Asymptotic solution of the requirement |A| < 1 yields • If $\Delta z_- \ll \Delta z_+$ then $d_+ < \frac{1}{2}$ • If $\Delta z_+ \ll \Delta z_-$ then $d_- < \frac{1}{2}$ • If $d_{\pm} \gg 1$ then $\frac{\nu_{-}}{\nu_{+}} \approx 1$

For backward Euler we have to use $U_{\cdot,0^+}^{+,n+1} = U_{\cdot,0^-}^{-,n}$ Thus consider the solution

- $U_{j}^{n} = \begin{cases} \mathcal{A}^{n} k_{-}^{j}, & j = 0^{-}, -1, -2, \dots \\ \mathcal{A}^{n-1} k_{+}^{j}, & j = 0^{+}, 1, 2, \dots \end{cases}$
- If $\Delta z_{-} \ll \Delta z_{+}$ the scheme is stable
- Otherwise the scheme can be unstable

Analysis on bulk interface conditions also implies additional constraints on step size

Surface Temperature for the double gyre example (6 months)

Observations

Running in the coupled mode, the ocean model stays stable with a timestep size of up to 40 minutes; running in the ocean-only mode, the timestep size can be larger (>72 minutes)

Conclusions and Future Work

- Instability originates from interface condition and the implementation
- Validated on an advection-diffusion model
- Extending to a passive tracer model
- Adding the iterative Schwarz method in Q-GCM to improve the step size

Office of

Science

