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Abstract / Motivation * Partial soroering of ighmpurty atoms = large ptch ande scatiefig. Vjeet the challenge of disruption- Meet the challenge of disruption-
rate 10r runaways -2 much nigner eav
Tokamak disruption, if not completely avoided, must be *  OnITER E<Eav still requires extremely high impurity density [4] induced Earticle & enerqy exhaust iInaucea core temEerature coliapse

effectively mitigated in a fusion reactor like ITER to prevent: ~ i e Py T ¢ .
* (1) Rapid [ f wall f th h Iting, ization, and sublimati issi : . e . : asma cooling nisto mic-to-runaway current conversion
(1) Rapid erosion of wa surface through melting, vaporization, and sublimation Eceerrg1y0c01|;s;p:ted > Uncover the physics governing distribution of high heat g ry y
due to the orders of magnitude increase in the power exhaust in the thermal i : : S P et C e Gale e e
quenCh phase; Zzsvr:rgeex:i\:uvsvt > if ﬂux to PFCS du_rlng thermal quenCh Of d!SrU pt|0n How 3D magnetic fields set the time duration of core Amoux,
* (2) Breaking and shifting of vacuum vessel and blanket modules due to the radliated awaly ik * Radial structure of divertor heat loads can be quite different from normal thermal collapse due to enhanced plasma transport EIZI%I—OQ’;IF
extreme electromagnetic loading by eddy and halo currents in the current St plasma thermal quench onset & duration
quench phase eIl [DOer o Significant scrape-of-layer broadening, in the range of 5-20, How does impurity produced by PMI get transported
« (3) Deep damage of surface and substrate in the plasma facing components by about 10 MW/m* o Significant toroidal and poloidal inner/outer asymmetry ol
runaway electrons that can induce costly secondary damages > T d if istent pl " ‘& "
o e e o e « Torodicity reshapes runaway vortex-> larger Eav, only with high-Z impurity [5] ’ ;Zep%‘gsfﬁé?&%alg’ars g?rlil\?iﬁzegtl’[]h;Tg;\;er’::)Sr’is owar _S seli-consistent plasma transport & magnelic
: ot e dynamics
ik ﬁ%u?ﬁ&%%%ﬁ%@%%ﬁ e toroical effect on threshold spread over a longer time period td. On JET, " o - : g
rare, must be (passively) mitigated. o 201 e sos o 2o10 for density limited disruptions, ta/tTa is Critical capability enhancement_ for electroma_gne_tlc version of GTS gyroku_wetlc code
Tiwo main phases: : Successful benchmark of a variety of modes in different tokamak geometries
-+ Therml quench removal of plasma thermal energy 4l I observed to be 3-8.
il ‘?ﬁﬁxﬁ’:ﬁdtom ‘Z},"ZZZZ“ e ”::;e"r:y I « Ideally, favorable mitigation would result in the
ITER Whas = 395 MJ durmped to first wall, in 100-150 ms Wy " largest Ata and the longest td that are possible
(From Eidietis, 2018) N I
The TDS SciDAC Center applies large-scale simulations to 2 e
. . : e o e e ot e e 2 O D JET-— llel heat fl _ ++ simul v UX Wi Code & Expt. mpari of flux width
establish the fundamental physics for charting a path for \ parsie eat ITER ~BOUT: Sl cherter st ockicth ey
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effective disruption mitigation: ’
« Transport (gyrokinetic and gyrofluid) calculations of particle and energy in 3D
magnetic fields for (1) > Runaway energy control Briftlaaring micro-tearing DIII-D Pedestal
« Kinetic calculations of runaway generation & transport for (3) Basis: runaway current ~ runaway density (speed is c); power flux ~
«  Multi-fluid and fluid/kinetic calculation of plasma/neutral dynamics for (2) runaway energy -> mitigation by Iowering runaway energy
] [ = Impurities can lower runaway energy at fixed
Meet the Chal Ien! Ie Of d IsrUI !tlon- electric field -- Location of runaway vortex e ol
depends on impurity content
induced runaway electrons © Promptioss via 3D magnetc fleids can imit > Uncover the physical processes for density limited disruptions
unaway energy gain through . j . : :
] i i I i copineiientdasiadaion « Six-field fluid simulation of DIII-D shot #110222
Strategy.. aVOId the runaway If pOSSIb/e, Othel'WISG mltlgate the L] For an otherwise fixed plasma discharge . Proceed to Greenwald limit by ramping up density
. - g oy condition, resonant wave-particle scattering p . . q
damage on plasma-facing components by controlling (limiting) via extornally injosted whistler wave. can * Athigh edge density, perpendicular turbulent transport dominates parallel o ————
the runaway energy reshape the runaway vortex by removing classical transport, leading to substantially reduced contact with divertor plates, unstable low.n mioro-tearing mode (MTM) (2) which has its maximum on high-field id swiches
. . . i 3 d g q 0 high-n on ne low-Tield side. In the highest electron beta case (C), Kinetic ballooning
ITER base scenario: 10 MA of a 15MA discharge can turn into I Gty (e [ T‘”d thf re%‘?:_Of T'gztrfnsm)r(t the_”ti;‘f;gz '”SO'Ide tie :?St e I‘“X ?_‘rrface mode is destabilized on the low-feld side of NSTX.
: . : s « Impurity radiation leads to an X-poin , edge cooling, current profile . S . : . ) i
(unawlaly current. Injection of mgss:ve amount of high-Z > Runaway transport shrinkage , and finally density-limit related disruptions » Towards improved radiative cooling with high-Z impurities
impurities to suppress and terminate the runaway current oo e : , : : Time-dependent collisional-radiative model is essential to understand transient
Key findings: in a strongly mitigated disruption, spatial transport is strong radiative radiative cooling with impurity injection
» Runaway Avoidance (Suppression): (diffusion + ware pinch) - avalanche spatial eigenmode [7] e o >
e . . . . 3 0.14
Ideal but impractical: stay below the Connor-Hastie threshold electric field > e ety e el iR :
no rl{naways . large radius ( r/a~0.8) and aligned with B-field e
Realistic target: stay below the runaway avalanche threshold electric field > +  Strong pitch-angle scattering leads to the §
limit the runaway density (current fraction) formation of trapped energetic particle

population
» Ware pinch convects the trapped energetic
electrons inward

Inwardly convected electrons are detrapped
. =» run away
Momentum space topological Provide “seed” for avalanche instability near

(runaway vortex [1,2]) transition rla~0

sets avalanche threshold Eav[3] Resulting runaway population strongly peaked
near tokamak magnetic axis

Final state largely independent of phase
space distribution of “seed” electron

pha\se space flux(E=1.8) pOPU|ati0n

A contour plot of transport coefficient at

: . 2
separatrix versus plasma current nG=lp/na
and line averaged density. The large

Time evolution at separatrix Maximum growth rate vs density transport boundary (at the separatrix D >

10m</s) shown by the x’s is consistent
with experimental operational density limit
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for both small- and large-angle collisions, radiation damping, quasilinear diffusion for wave-particle
interaction, bounce-average; has both continuum and particle methods

» Uncover the kinetic physics of boundary plasma and PSI
« Self-consistent modeling of sheath/presheath taking into account the
interactions between plasma/neutral/radiation

» Distribution function of electrons and ions using a continuum-kinetic code to
study sheaths, and comparing the different terms of the particle energy flux
density between the continuum-kinetic and 5-moment two-fluid model

phase space flux(E=2.0)
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