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Transport in solids such as Fe and UO2 is dictated by the potential 
energy landscape experienced by defects – the valleys and mountain 
passes that separate those valleys. The astronomical vastness, 
complexity, and roughness of the potential energy landscape of 
materials make the investigation of their long-time dynamical 
evolution extremely difficult.

Due to significant free energy barriers between different metastable 
basins of configuration space, direct simulation methods are typically 
unfeasible. Indeed, molecular dynamics (MD) simulations of 
materials are typically restricted to sub-microsecond timescales, 
which is often much too short for a trajectory to cross the barriers that 
determine the long-time behavior. 

A common goal of multi-scale materials simulation is to build kinetic 
Monte Carlo models (or more generally Markov models) from the 
transitions between metastable basins observed during molecular 
dynamics trajectories. Identifying basins as states, after calculating 
interstate transition rates, the Markov model can efficiently simulate 
long state-to-state trajectories, providing access to the long timescale 
dynamics. 

However, constructing such mesoscale models from atomistic 
simulations is fraught with danger - if all possible transformation 
pathways are not observed, the predicted behavior over long time 
scales can become uncontrollably erroneous.

Introduction TAMMBER

Temperature Accelerated Dynamics

One dimensional illustration of 

the rare event problem. The 

expected escape time is the 

inverse rate, which due to the 

Arrhenius relation can be 

extremely large at 

temperatures of practical 

relevance.

A bulk crystal containing a 

defect can have multiple 

metastable basins in 

configuration space, 

corresponding to different 

defect structures. We identify 

states through structural 

analysis of the basin energy 

minimum. A Markov model of 

the state-to-state dynamics can 

in principle access long 

timescales, but without a 

complete set of possible 

transitions the model can 

produce erroneous predictions.

The unknown rate. 

Any real state network 

will have unobserved 

states and connections 

after a finite amount of 

sampling (left). We 

represent this 

incompleteness by 

assigning an ‘unknown 

rate’ to each state, which 

leads to an absorbing 

state (right). Importantly, if the unknown rate is larger then the unobserved rate, the 

dynamics of the right network are statistically identical to those of the left before 

absorption occurs.

The challenge addressed by TAMMBER is to 
efficiently leverage massively parallel computational 
resources to construct mesoscale Markov models 
from MD, whilst controlling (or at least quantifying) 
the error induced due by incomplete sampling. The 
central conceptual tool which we use to do this is the 
‘unknown rate.’ TAMMBER assigns an ‘unknown’ 
rate to each state, which is an estimate of the 
remaining (unobserved) rate and leads to an absorbing 
‘unknown’ state. The validity time of the model 
network is then the expected time to absorption given 
an initial state distribution. The validity time is used 
by TAMMBER as a key measure of the model quality.

As shown on the right, TAMMBER distributes 
thousands of accelerated MD simulations across 
massively parallel computational resources. Bayesian 
uncertainty estimators are used to determine in which 
set of metastable states additional computational 
effort is most profitable, allowing TAMMBER to 
autonomously allocate computational work to 
optimally increase the model quality. This poster 
outlines each stage of the process and provides some 
example applications.

The TAMMBER workflow. Temperature accelerated MD produces interstate transition trajectories which are analyzed by Bayesian 

rate estimators and static calculation. An absorbing Markov chain then gives the expected validity time of the model and 

optimally allocates resources and the degree of temperature acceleration to grow this time as fast as possible.

Unknown rate estimation

Optimal Allocation of Computational WorkOptimal TAD temperature

Elements of TAMMBER

After a period of TAD on a single state, TAMMBER will have 
found a set of escape pathways with associated rates and first 
passage times in a total sampling time (left). TAMMBER then 
exploits the Poisson distribution to derive the likelihood of the 
observed data for a given total rate. Using Bayes’ rule with a 
minimum information prior, we then have a posterior 
distribution for the total escape rate (right), from which 
moments of the unknown rate can be obtained.

A TAD simulation expends computational work performing MD, barrier 
calculations, and energy minimization. For a given low temperature, there 
is an optimal high acceleration temperature; too high, and either repeated 
transitions or very large barrier events of negligible low-temperature 
influence will dominate. Too low, and all the effort will be spent in MD 
without any transitions. Our estimate of the unknown rate leads to a cost 
function for TAD yielding, autonomously, the optimal acceleration 
temperature for each state. 

Local self-optimization. Left: 

For a given spectrum of 

escape barriers, TAMMBER’s 

TAD cost function finds the 

optimal acceleration 

temperature. Right: With a 

systematically higher barrier 

distribution, the cost function 

autonomously realizes the 

optimal acceleration 

temperature for this state 

should be higher.

Using the calculated rates to build an absorbing Markov Chain, we can 
derive an expression for the expected residence time of the network and 
the gradient of this time with additional computational work in each 
state. We then allocate computational work proportionally to this 
gradient in order to maximize the residence time.
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To efficiently find high barrier 
processes we use the temperature 
accelerated dynamics method 
(TAD). TAD relies on the Arrhenius 
behavior of harmonic transition 
state theory to infer low 
temperature escape times from high 
temperature escape times. To do 
this, one must calculate the energy 
barrier for an observed process. In 
addition, the Poissonian distribution 
of escape times allows one to infer, 
with a controlled uncertainty, the 
effective total sampling time at low 
temperature from a given sampling 
time at high temperature. 
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