Long-time sca 2018 OAK RIDGE NATIONAL LA MANAGED BY UT-BATTELLE FOR THE DEPARTM	ale simul 3 Scienti BORATORY	lation fic Dis NATIONAL FUSION
UCI University of California, Irvine	OPP	PL
ISEP Introd	luction	
 Motivations EP (Energetic Particle) confine ignition experiments such as I confinement EPs can excite mesoscale EP These can degrade overall platintegrity of the wall and plasm EPs => significant fraction of t can influence microturbulence thermal plasmas and macroso modes potentially leading to d Ignition regime plasma confine most uncertain issues for extra Objectives to improve physics understand interactions with burning therm simulations To develop a comprehensive p To deliver an EP module incor models and high fidelity reduct device modeling (WDM) projective 	ement is a critic TER – ignition P instabilities => asma confinem a-facing competent the plasma end responsible for copic magnetod isruptions ement with α-p apolating from ding of EP cont nal plasmas th predictive capa porating both for ced transport m	cal issue f requires (> drive larged ent and th onents > rgy dension of turbuler by drodyna article heat existing d finement a rough exa bility for E first-princip odels to the
Energetic particle instab	oilities – V&	V chall
 The EP-driven Alfvén spectrur Which mode dominates is mode A variety of different EP stabili The most important profiles de are not measured directly, but Fast ion profiles are "sculpted- 	n typically inclu del dependent ty models have etermining AE e inferred from r -out" over time	Ides many and sensi e been de stability (n econstruc by AE ins
ISEP computation	onal models	S
 GTC First-principles, multi-physics, (PIC) model with applications EP instabilities, MHD modes, and neoclassical transport Adapted to peta-scale and em MPI, OpenMP and GPU paral 	global gyrokine to microturbule RF (radio-frequ lerging exascal	etic partic ence, mes Jency) hea le platform
 Comprehensive continuum (Ε δf gyrokinetic model Includes full physics features r turbulence and transport in ex 	ulerian) electro needed to reali perimental toka	magnetic stically sir amak disc
 FAR3D/TAEFL High fidelity reduced stability r closures to include resonant d include finite gyro-radius effec Time evolution and direct give 	nodel using La Irives and Padi ts	ndau-fluic approxim
 Collaborating models GEM – gyrokinetic δf PIC EUTERPE – global, electroma ORB5 – linear/nonlinear gyrok MEGA – kinetic/MHD hybrid M3D-K - kinetic/MHD hybrid NOVA-K – linear hybrid kinetic 	agnetic gyrokin kinetic PIC	etic PIC

and V&V components of the ISEP (Integrated Simulation of Energetic Particles in Burning Plasmas) project iscovery through Advanced Computing (SciDAC-4) Principal Investigator Meeting, July 23-24, 2018 Don Spong (ORNL), Zhihong Lin (UCI), Sam Taimourzadeh (UCI), and the ISEP Team

for self-heated good EP

ge EP transport. hreaten the

sity in ITER. EPs nt transport of amic (MHD)

eating: one of the devices to ITER.

and EP a-scale

EP physics ples simulation the fusion whole

enges

y unstable modes itive to profiles eveloped (see below) n_{fast}, E_{fast}, q-profile) ction or modeling stabilities

le-in-cell so-scale ating

global

mulate charges

nations to

ISEP Verification and Validation Activities

- Previous GSEP verification and validation activity Directed toward the simulation of RSAE modes in the DIII-D tokamak
- (discharge #142111) with time-evolving frequencies > 3 codes: GTC, GYRO, and TAEFL – linear analysis > D. A. Spong, E. M. Bass, W. Deng, W. W. Heidbrink, Z. Lin, B. Tobias, M. A. Van Zeeland, M. E.
- of Alfven eigenmodes in the DIII-D tokamak," Phys. Plasmas Vol. 19 (2012) 082511-1. Frequency/growth rate variation with q_{min} among the 3 models

Current ISEP verification and validation activity

> Directed toward the simulation of RSAE and TAE modes in the DIII-D tokamak (discharge) #159243 which featured comprehensive stability and fast ion transport diagnostics C. Collins, W. Heidbrink, M. Podesta`, R. White, G. Kramer, D. Pace, et al., "Phase-space dependent critical gradient behavior of fast-ion transport due to alfv en eigenmodes," Nuclear Fusion, vol. 57, no. 8, p. 086 005, 2017. > 8 codes: GTC, GYRO, FAR3D, GEM, EUTERPE, ORB5, MEGA, NOVA Both linear and nonlinear simulations are in progress

Austin, C. W. Domier, N. C. Luhmann, Jr., "Verification and validation of linear gyrokinetic simulation

Long-time simulation of energetic particle instabilities

Nonlinear Alfvénic instability simulation is important for understanding EP transport effects and heat loads on plasma-facing components (PFC)

Critical gradient (time average effect): EP profiles evolve to be near marginal stability => stiff transport regime => profiles don't change with increasing power Long-time nonlinear effects: variation, intermittency about critical gradient point => instantaneous losses exceed time average and can cause PFC damage

Time/Alfven time

Conclusions and future work

Verification and Validation

ISEP and the previous GSEP projects have developed close connections with fusion experiments, such as DIII-D, for successful V&V activities

time

In addition to the primary ISEP models, we have engaged with outside EP modeling codes

Recent linear stability verification will be extended to the nonlinear regime

Long-term nonlinear simulations

Mutiple AE modes have been followed for 10,000 Alfvén times Extension to recent DIII-D transport analysis case

Connection with critical gradient modeling

Source/sink balancing models will be further developed