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Introduction: Disruption is an unplanned loss of plasma

confinement; macroscopic dynamics are involved.

e Disruptions release stored energy over a

short period of time.

* Plasma thermal energy and energy in B in
ITER may be freed over ~1 ms and ~10s of ms,
respectively.

* ITER plasma will store > 500 MJ. (~100 kg of
dynamite)

* Three concerns arise with disruption:

1) Thermal loading, 2) EM loading, and 3) Runaway NIMROD high-/ simulation

e” generation results [Kruger, et al., PoP

. . . 12, 056113 (2005)].
* Extreme conservatism is not an option. ( )

“Burning plasma operation in ITER will require ... ... small margins against
each of the three major plasma operation limits ....” Hender, et al., NF 47,

128 (2007).



Disruption is a multi-scale process.
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* Thermal quench is circled in red; current quench (in blue) extends off first two plots.
* Note the distinct time-scales.



Simulations need to model the disruptive dynamics

through the time that the discharge ends.

* Disruptions may excite multiple MHD events while the current decays.
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Simulated kinetic energy fluctuations The simulation reproduces the
decomposed by toroidal harmonic (0sn<21) qualitative effect of the TQ being fast

indicate multiple events over time. relative to the CQ.



Disruption also involves multiple physical effects.

1. Macroscopic dynamics with B-
topology evolution

>

>

Island evolution and
stochasticity

Kink and vertical
displacement

2. Kinetic-closure information

>
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Perturbed bootstrap current
for NTMs

Neoclassical viscosity for
rotation damping

Parallel heat transport (TQ)
Cross-field transport
Fast-ion effects for RWMs

3. Runaway-electron kinetics
» Distribution and confinement
» Macroscopic effects on 1 during CQ

4. Impurity flows and radiation

» Density-limit physics & TQ
» Mitigation (gas and pellets)
» Neutrals and charged species

5. Plasma-surface interaction

» Sheath effects on currents, energy,
and flows

»  Impurity sourcing

* Present efforts represent a start on integrated disruption simulation.



Disruption can include one or more classes of

macroscopic plasma dynamics.

Magnetic Topology Change:

* Resistive or other non-ideal instabilities reconnect magnetic field-lines and
develop topologically distinct magnetic islands.

* Island overlap produces regions of stochastic magnetic field.

* |Islands also tend to brake plasma flows, leading to secondary instabilities.
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Cross-sections of islands are embedded Non-overlapping islands are distinct

among toroidal flux surfaces. regions but enhance energy transport.



Vertical displacement of the plasma torus leads to

wall contact.

Vertical Displacement:

 Modern tokamak plasmas are vertically elongated, which stabilizes some
macroscopic modes but requires active vertical position control.

* Disruptive transients can upset this control.
e Control can also be lost without other instabilities.

Vertical-displacement simulation
results show evolution of plasma
pressure (color) and magnetic flux.




Three-dimensional distortion of the plasma shape

results from kink instability.

Kink distortions:
* Kink instability can result from insufficient profile control.

* Loss of plasma flow due to island-induced braking destabilizes kink that
grows on the time-scale of resistive diffusion through the wall.

* Contact with a surface during vertical displacement also destabilizes kink.

e
R4
Isosurfaces ofJ”/B =-0.085 (mustard) Particle density isosurfaces at 25% (tan)
and J,,/B = +0.8 (brown) from a toroidal and 75% (red) of max from
simulation showing kink instability. computational results of idealized

bubble-swallowing.



Model: Our computations use visco-resistive (full) MHD

with fluid closures.

 The following system is our base non-ideal single-fluid model.

a_n +V- (nV) =V- (DnVn - thvzn) particle continuity with
ot artificial diffusion
mn(ai+V°V)V= JxB-VQ2nT)-V-11 momentum density

5

0
L(—T+V-VT)=—nTV-V—V-q temperature evolution
y—1\0t
B day’s law &
—=—V><(7’]J—V><B) Faraday’s law & MHD
ot Ohm’s
upJ=VxB Ampere’s law
V-B=0 divergence constraint

 The NIMROD code (https://nimrodteam.org) is used to solve linear and
nonlinear versions of this system.




Closure relations approximate plasma transport effects.

* Magnetic diffusivity depends on temperature.
3/2
« n(T)=no(To/T)

 Thermal conduction and viscous stress are anisotropic to approximate
magnetization of plasma particles.

* q=—”[(%n—Xiso)bb+xi501]'VT
. LI:V”mn(l_3ﬁﬁ)6'w'f""isomnﬂ E=VV+VVT-§1VV
© 1/ Xiso >>1 Vil/Viso >>1

 Temporal scales are well separated.

<<T <<T

T Alfven waves wall diffusion plasma resistive diffusion

* Different disruptive dynamics occur over ranges of timescales: 100s of
T, to many 7,



Kinetic information can be incorporated through

closures on the fluid-moment equations.

* Evolution of “single-particle” distribution function (~ probability density

function) is averaged over gyro-angle.

. 2—{+ch Vf +35 i +$§2 =C [Held, et al., PoP 22, 032511 (2015)]
* sisnormalized speed, and &is cosine of pitch-angle wrt B.

+ The distribution function is in 5D space + time, f = ]T(X,S,g,t) :

* (s the collision operator, which is second-order in s-& space.

* @Gyro-averaging eliminates a sixth dimension but complicates the PDE.

. (ch, S, 5) is the velocity vector for characteristic trajectories in 5D, and

it dependsonE, B, T, s, and &.



Numerics: the NIMROD code uses 2D spectral elements over a

plane and 1D finite Fourier series for the periodic coordinate.
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* extremely anisotropic transport and
.. : Example of cardinal basis functions for
* the magnetic divergence constraint ) : :
, _ interpolation: Lobatto grid from the
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'Boyd, Chebyshev and Fourier Spectral Methods; Deville, Fischer, and Mund, High-order
Methods for Incompressible Fluid Flow.



The time-advance is tailored for magnetized plasma dynamics.

* NIMROD’s implicit leapfrog
[Sovinec and King, JCP 229, 5803]
advances different physical fields
in separate algebraic systems. y s e pan

* This method is an extension of | | ‘ |
earlier semi-implicit methods for T
waves. nt12 T2 i*32 i3
Bj-,l-112 Bj-i’-3/2

* |t was developed for Hall-

MHD computation.
The plasma flow velocity is temporally

* Advection is implicit. staggered, hence “leapfrog.”

* The C° representation is stabilized by the semi-implicit operator, by divergence-
error diffusion, and by spectral projections of parallel vorticity and compression
[Sovinec, JCP 319, 61 (2016)].



We are investigating first-order system, least-squares to help

stabilize the representation.

* Direct application of least-squares includes Navier-Stokes, MHD, and two-
fluid systemes.

Bochev and Gunzberger (Comput. Fl. 22, 549) tested LS for NS.

Cai, et al. (SIAM JNA 31, 1785) analyze first-order system LS
formulations.

Adler, et al. (SIAM JSC 32, 229) apply FOSLS to incompressible resistive
MHD.

Leibs and Manteuffel (SIAM JSC 37, S314) develop a two-fluid version.

e Least-squares has also been used for separate stabilizing terms.

Stabilization of the Galerkin formulation results from least-squares
minimization of intra-element residuals.

Hughes and Franca (CMAME 65, 85) introduced LS for Stokes flow
(viscous and incompressible).

Barth, et al. (SIAM JSC 25, 1585) compares different approaches.
Hughes, Franca, and Hulbert (CMAME 73, 173) extend the approach to
the advection-diffusion equation.



The implicit continuity equation has no physical dissipation and

benefits from least-squares stabilization.

* Define the local residual for an arbitrary function fin the space for An as:

_ fojnn)e. i+
R—f+At{(5+nJ )V (VS+V] )

+(VS +Vj+1)-V(§+nj+l/2)+nsv-Vj+1 +V/H -Vns}
e LSQ minimizes the error.

* Find An & N that minimizes /, where I=fR2 dVol

* The algebraic equation results from varying An->g within the space.
For all g& N, find An such that

An + At (&+nj+1/2)V'(VS +Vj+1)

81 =0=2[dVol >

+(V, +Vj+1)-v(%+nj+l/2)+nsv-Vj+1 +V/H -VnsH

B ——

X




Simple advection tests without dissipation show that least-

squares reduces noise.

e 1D tests consider 20 cubic elements with uniform flow in a periodic
domain.
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Advection without dissipation Least-squares projection avoids
produces mesh-scale noise with noise but does not prevent
Galerkin projection. (CFL=0.47) overshoot.

* Least-squares for n and T has been used in disruption simulations.



Least-squares may also benefit the advance of magnetic field

in Hall-MHD computations.

* Here E= nJ—VxB+(ne)_1(JxB—VPe) and the JxB Hall term is,
effectively, advective.

* An auxiliary field is needed for first-order least-squares, and the
cleanest system will need an H(curl) representation for E (or A):

Minimize 1=deol[RB-RB+CR§+CERE-RE] for
R, = Ab+AfV xe
Ry =V-(b+Ab)

R, =e+Kx(b+fAb)+fovab—f("°+")VxAb—M
Uo

with {Ab,e} € Sg3=H' x H(curl), and K, L, and M are known

vectors during the computation for e and Ab.



Parallel computing: NIMROD fluid computations use 3D

domain decomposition over spatial coordinates.

e Data structures for NIMROD’s 2D mesh
of elements are divided into blocks.

* Block are mapped to processes for
MPI parallelization. %
* Hybrid parallelization via OpenMP
is also based on the block «ggi %
decomposition.

* Blocks enhance geometric

flexibility.
* Fourier components for the 3™ Heuristic representation of 2D
dimension are decomposed among decomposition of elements.

layers of processors.

e Communication is used before and
after FFTs.



Tests of hybrid parallelization on NERSC’s Cori KNL show

competing computational needs.

* Tests use a large element mesh but do not emphasize factorization
or Fourier-based parallelization.

16 MPI cores 32 MPI cores
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* Finite-element assembly is
- |teration . .
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- t FE Assembly .
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| <l ) P * Algebraic solves tend to get

slower, however.
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Recent work adds parallel decomposition over the speed grid

in kinetic computations.

* Magneticislands lead to enhanced
thermal transport.
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distribution function.
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* Coupling over particle-speed grid is
relatively weak.

* MPI decomposition has been applied
over this coordinate.

Computed results on distortion of distribution
(lower frame), due to island (above).



Parallel decomposition over the speed grid facilitates kinetic

modeling.
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* Computations within individual

group of processors, shows
practical performance gains.

: B =R

speed values dominate T 5o~ Time to Solution ,/ ]

. . | ———— Time to Solut 7 A _
processing time. ST et o

- ———— FERHS Time (par)  ~ e .

. . 800 o 7 —

* Weak scaling with the new = I L8 |
decomposition, assigning a e | ]

o | - ’ Pis .
single speed value to each 400 8 .- i

Number of Speed Points

Speed-parallelization weak-scaling results are
shown by the solid lines.



Algebraic solves: Parallel linear algebra tends to dominate

overall computational performance.

* Global-scale physical propagation of information over each time-
step leads to ill-conditioned algebraic systems.

* Algebraic systems for nonlinear computations couple all 2D element
nodes and all Fourier components.

* Meshes for large fluid-model computations are of order 1M
nodes and 20-100 Fourier components.

* Kinetic computation adds two smaller dimensions.

* The size of Fourier-off-diagonal terms depends on the
amplitude of the perturbations.

* Preconditioned GMRES and CG are used to solve the algebraic
systems.

* Fourier coupling is based on matrix-free computation.



Preconditioning is based on sparse direct solves over the 2D

spatial mesh.

e Standard preconditioning is block-Jacobi with blocks extending over
the 2D mesh of elements.

e SuperLU_DIST [Li and Demmel, ACM TMS 29, 110] is used in nearly
all parallel computations.

100+ M Loop time
] <> @ b *- 0 0 0 O] 50. M SuperLU_DIST
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« N W O A 0 0 000 = 40
¢ v <« 9Ol |o o o0 0o O ® o

O— . .
Schematic of block-Jacobi. For NIMROD each version  trisolve

3.3 branch

block is all nodal degrees of freedom for a single

Fourier harmonic. Xiaoye Li of LBL applied her reduced-

latency method to NIMROD on KNL.



Preconditioning toroidally distorted conditions is a challenge

for disruption computations.

* Alimited block-Gauss Seidel operation improves robustness in only
some computations.
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e Alternating between two preconditioners (FGMRES), where the
second is based on physical planes, also helps in some cases.
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Conclusions and Outlook

* Understanding disruptions through numerical simulation is
important for the magnetic confinement program.

* The multi-scale, multi-physics nature of tokamak disruption
influences the choice of suitable numerical methods.

* Disruption simulation studies with the NIMROD code are
progressing through continuous improvement of
e Physics models,
* Numerical methods,
* Algebraic solvers, and
* Use of new computer architectures.



