
Using	Object	store	for	HEP	data			
HEPnOS

HEP	Data	management

HPC	and	data	management	for	HEP
SciDAC HEP	Data	Analytics	on	HPC

N.Buchanan2,	S.	Calvez2,	P.	Carns1,	P.F.	Ding4,	M.	Dorier1,	D.Doyle2,	A.	Himmel4,	J.	Kowakowski4,	R.	Latham1,	M.	Paterno4,	A. Norman4,
S.	Sehrish4,	A.	Sousa3,	S.	Snyder1,	R.	Ross1

1Argonne	National	Laboratory, 2Colorado	State	University,	3University	of	Cincinnati,	4Fermi	National	Accelerator	Laboratory

NO𝜈A	Event	Selection

• Events	are	stored	in	a	ROOT	n-tuple	format.
• ~180	thousand	ROOT	files.
• File	sizes	range	from	a	few	hundred	KiB	to	a	

few	MiB;	the	full	dataset	is	~3	TiB.
• Strict	event	selection	criteria	to	reduce	

millions	of	theses	events	to	a	few	tens.

Using	HPC	for	Parallel	Event	Selection

FIG.	1:	Science	context	
and	traditional	solution		

2018 Scientific Discovery
through Advanced Computing (SciDAC-4)

Principle Investigator Meeting, Rockville, MD
http://computing.fnal.gov/hep-on-hpc/

• Experimental	HEP	deals	with	complex	Big	Data	
from	unique	detectors.	
–Already	~10s	of	PB	for	CMS	at	US	centers,	expected	
to	grow	by	2	orders	of	magnitude	during	HL-LHC	era
–~17	PB/year	for	DUNE
• Analysis	tasks	and	therefore	analysis	software	is	
also	complex.
• The	analysis	software	is	written	by	thousands	of	
physicists	.
•We	provide	a	modular	framework	and	data	model	
to	support	their	collaboration.
•We	are	exploring	the	design	of	an	object	model	
that	leverages	HPC	machine	features.

Model
(neutrino and
anti-neutrino)

Event selection and data
reduction

Neutrino candidates
(background,
predictions,

observations)

Neutrino events,
background,
predictions

Parameter estimation

Reconstruction
output

Particle and
event ID

Simulation
output

Particle and
event ID

n-dimensional
contour plots

Data store: Tens of thousands
of CAF files in dcache or tape

Data size:~TBs

ROOT macro run as tens of
thousands of individual jobs

on grid

Data size: few tens of KBs

• Then	summarize	these	tens	of	events	to	be	used	the	extraction	
of	the	neutrino	oscillation	parameters.

• Goal:	reduce	the	time	it	takes	to	process	analysis-level	data.

Measurement	of	the	neutrino	oscillation	parameters	by	the	NO𝜈A	
collaboration,	PRL	118,	231801	(2017).
• Sample	of	~27	million	reconstructed	spills	to	search	for	electron-

neutrino	appearance	events.

CN CN CN CN

CN CN CN CN

CN CN CN CN

CN CN CN CN

srun -n 76800 shifter \
python process_nova.py novacaf.h5

High bandwidth global file system

Login
Node

BB BB BB BB

Compute nodes
connected Aries

high-speed
network

novacaf.h5
striped

High bandwidth burst buffers

Most	of	the	computing	resources	that	will	be	available	to	us	will	be	at	HPC	centers.
• Modify	our	workflows	and	code	to	take	full	advantage	of	HPC	systems.
• Minimize	reading,	communication and	synchronization	between	processes,	parallelism	is	

implicit;	user-written	code	looks	just	like	serial	code.
• Process	all	data	for	a	given	slice in	a	single	MPI	rank,	the	slice is	NOvA’s “atomic”	unit	of	

processing,	like	a	collider	event.
• Organize	the	data	into	a	single	HDF5	file,	containing	many	different	tables.

~20,000 files

art/
ROOT

~20,000 files

HDF5

~20,000 art batch jobs
 on grid resources

~20,000 files

HDF5

Transfer files to
NERSC using grid tools

1 file

HDF5
1 MPI job to
concatenate
~20,000 files

Summary	and	Future	work
• NOvA is	taking	ownership	of	our	HDF	“ntuple”	production	code.
• We	will	be	doing	large-scale	performance	testing	of	the	code.
– Similar	design	processing	LArIAT data	demonstrate	perfect	scaling	to	76,800	ranks;	read and	decompress 42	TB	
of	data	in	<	20	seconds	wall-clock	time.

• We	will	be	comparing	performance	with	DIY	C++	14	implementation.
• Integration	with	larger	workflow	using	Decaf	that	is	also	part	of	the	SciDAC project.
– use	of	changes	in	event	selection	criteria	to	evaluation	systematic	uncertainties	in	the	mixing	parameter	
measurements.

– one	integrated	MPI	program,	to	take	best	advantage	of	HPC	platform.

def kNueSecondAnaContainment(tables):
df = tables['sel_nuecosrej']
return (df.distallpngtop > 63.0) & \

(df.distallpngbottom > 12.0) & \
(df.distallpngeast > 12.0) & \
(df.distallpngwest > 12.0) & \
(df.distallpngfront > 18.0) & \
(df.distallpngback > 18.0)

def vtxelasticzCut(tables):
df = tables['vtx_elastic']
df['good'] =

(df.vtxid == 0) & (df.npng3d > 0)
KL = ['run', 'subRun', 'event', 'slice']
return df.groupby(KL)['good'].agg(np.any)

Listing	1.	Selection	on	multiple	columns	of	a	table

Listing	2.	Groupby and	Aggregation	example	Distributing	and	reading	information
• Each	rank	reads	its	“fair	share”	of	index	info	from	
each	table.
–identifies	which	rank	should	handle	which	event,	
for	most	even	balance
–identifies	range	of	rows	in	table	that	correspond	
to	each	event	(all	slices)

• Event	“ownership”	information	distributed	to	all	
ranks.
–this	assures	no	further	communication	between	
ranks	is	needed	while	evaluating	the	selection.	
criteria	on	a	slice-by-slice	basis.
–perfect	data	parallelism	in	running	all	selection	
code.

• Each	rank	reads	only relevant	rows	of	relevant	
columns	from	relevant	tables.
–all	relevant	data	read	by	some	rank.
–no	rank	reads	the	same	data	as	another.

sel_nuecosrej vtx_elastic

rank 0

rank 1

Index info read by rank 1
Table row read by rank 0

run subRun event slice distallpngtop ...35
more…

16433 61 356124 35 nan
16433 61 356124 36 -0.74013746
16433 61 356124 37 nan
16433 61 356125 1 nan
16433 61 356125 2 423.6337
16433 61 356125 3 -2.849864

run subRun event slice vtxid npng3d …6 more…
16433 61 356124 35 0 0
16433 61 356124 36 0 1
16433 61 356124 36 1 1
16433 61 356124 36 2 5
16433 61 356125 1 0 1
16433 61 356125 3 0 0

Table	2.	This	table	has	one	entry	per	vertex.	Some	slices	have	none	
(and	do	not	appear	in	this	table).	Some	slices	have	many	vertices.

Table	1.	This	table	has	one	entry	per	slice.	We	are	doing	
slice-by-slice selection.

hepnos::DataStore datastore(configfile);
for (auto it = datastore.begin(); it != datastore.end(); ++it)
for (auto const& ds : *it)
for (auto const& r : ds.runs())
for (auto const& sr : r)
for (auto const& e : sr) {

std::vector<recob::Hit> hits;
art::InputTag hit_tag("gaushit", "", "PrimaryReco");
e.load(hit_tag, hits);
// .. do something with the vector of Hits ..

}

Summary	and	Future	work
• We	are	exploring	how	to	put	support	for	MPI	parallelism	directly	into	the	infrastructure.
–Will	enable	our	reconstruction/analysis	codes	to	take	advantage	of	data	parallelism	and	distributed	
programming	without	looking	much	different	than	it	does	today.

• We	will	deploy	to	NERSC	(through	Shifter)	and	ALCF	(through	Singularity)	and	perform	
scalability	study.
• We	will	be	comparing	performance	against	current	methods	of	reading	and	writing	data.
• Integration	of	object	store	with	larger	workflow	utilizing	Decaf	and	enable	its	use	at	different	
levels	of	processing.	

Listing	3.	Example	of	HEPnOSuse:	reading	from	the	object	store	

The	user	interface
looks	a	lot	like	our

current	user	interface

FIG.	2:	Workflow	for	translating	old-style	data	to	new-style	data

FIG.	3:	An	example	of	distributing	and	reading

Example	of	new-style	data	organization	in	HDF5

FIG.	4:	HPC	solution

FIG.	6:	CMS	detector

FIG.	5:	DUNE

FIG.	8:	HEPnOS

FIG.	9:	class	recob::Track	

User	code	Examples

HEP	data	organization
● A	common	design	is	to	have	levels	of	data	aggregation:	
data	set	/	run	/	subrun /	event	/	data	products

● At	each	level	of	aggregation,	the	named	items	are	
independent.

● Data	sets	can	contain	other	data	sets.
● Distribution	of	data	automated	by	the	data	model	
implementation,	not	user-visible.

art modules/user	code
Algo 3Algo 1 Algo 2

Event	“Proxy”

get<product>(key)

Source

Prepare	
“correct”	
proxy

HEPnOS C++	API
load

Interaction	with	proxy

Interaction	with	HEPnOS
User	path

FIG.	7:	User	interaction	with	HEPnOS

BAKE SDS-KeyVal

HEP	Code

RPC RDMA

PMEM LevelDB

C++
API

FERMILAB-POSTER-18-097-CD

Acknowledgement:	This	material	is	based	upon	work	supported	by	the	U.S.	Department	of	Energy,	Office	of	Science,	Office	of	Advanced	Scientific	Computing	Research,	Scientific	Discovery	through	Advanced	Computing	(SciDAC)	program,	grant	1013935.	

FIG.	10:	class	recob::Hit	

Goals
● Manage	physics	event	data	from	simulation	and	
experiment	through	multiple	phases	of	analysis

● Accelerate	access	by	retaining	data	in	the	system	
throughout	analysis	process

● Reuses	components	from	Mochi ASCR	R&D	project

Properties
● Write-once,	read-many
● Hierarchical	namespace	(datasets,	runs,	subruns)
● C++	API	(serialization	of	C++	objects)

Components
● Mercury,	Argobots,	Margo,	SDSKV,	BAKE,	SSG
● New	code:	C++	event	interface

Map	data	model	into	stores
Demo
• Using	existing	art framework-related	software:
–gallery provides	access	to	event	data	in	art/ROOT	files	from	
outside	the	art framework.
–pre-existing	builds	of	the	LArSoft data	product	libraries.
• Using	some	of	the	data	product	classes	from	LArSoft
(used	by	DUNE,	etc.)
– std::vector<recob::Hit>
– std::vector<recob::Track>
– art::Assns<recob::Hit, recob::Track>,
which	are	bidirectional	associations	between	hits	and	tracks.

• Using	Docker	containers	for	easy	portability	of	development	environment
• Prototype	test	programs	are	already	running	to:
– read	from	existing	art/ROOT	data	files,	and	to	write	to	the	new	data	store
– read	from	the	new	data	store,	and	verify	the	integrity	of	the	data

