
Background:

Surrogate modeling
Surrogate modeling can greatly reduce the computational costs in global sensitivity
analysis and model calibration which involve large ensemble model simulations. 
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Multi-level Monte Carlo approach:
Multi-level Monte Carlo (MLMC) method can solve high-dimensional uncertainty 
quantification (UQ) problems efficiently. 
Standard MC estimation conducts repeated sampling on a single numerical 
model with high resolution. MLMC estimation conducts repeated sampling on a 
sequence of numerical models with different resolutions. MLMC saves 
computational costs in the way that it conducts a large number of simulations on 
the computationally cheap low-resolution models and a very few simulations on 
the computationally expensive high-resolution models. 
In a stochastic subsurface problem with >1000 parameters, the MLMC method 
greatly improve the computational efficiency than the standard MC in forward UQ.

Future plans and partnerships: 

Model calibration:

Reconstruction and network optimization:

Earth System models like E3SM are computationally expensive to perform even a 
single forward simulation, but such models contain hundreds of uncertain 
parameters and algorithms.  Uncertainty quantification in or calibration of an ESM 
requires ensembles, which may need to be quite large given the dimensionality of 
the problem.  Many of the relevant land and atmospheric observations are at 
“point” scale (1 model grid cell or smaller) – how can we best use these?

Figure 1:  Climate model uncertainty is estimated 
using intercomparisons, in which each modeling 
center performs a single simulation or small 
ensemble.  Structural or parametric uncertainty is 
usually not not considered in individual models.  A 
variety of approaches among centers make it hard 
to attribute biases to specific differences. Figure 
from Friedlingstein et al., 2014.

In this project, we are conducting global sensitivity analysis (GSA) to identify the 
most important parameters and processes in the E3SM land and atmosphere 
models (ELM and EAM), and then calibrating a network of single-column coupled 
land-atmosphere models using point scale data using surrogate approaches.  We 
then reconstruct global maps of quantities of interest with posterior uncertainties.  
This new framework is being used to optimize placement of new observations for 
maximum uncertainty reduction.  Finally, we are using a Multi-level Monte Carlo 
(MLMC) to propagate uncertainties in fully coupled mode over a range of model 
fidelities and resolutions.
Figure 2:  Project workflow.  Site-
level observations for calibration 
include land-atmosphere flux 
measurements, temperature and
precipitation. The network 
optimization approach will 
suggested new measurement 
locations.

Figure 7 explains the relative computational efficiency between the standard MC and the MLMC using accu-
racies e50:05; 0:03; 0:02; and 0:01 for an example. Figure 7a plots max 0!n!Sj~I nðYLÞj decay with levels and
the e=
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threshold; Figure 7b indicates that variance max 0!n!S ~V ½InðQM‘Þ% is almost constant for all the lev-
els, and max 0!n!S ~V ½gnðY‘Þ% is smaller than max 0!n!S ~V ½InðQM‘Þ% and decreases with levels; Figure 7c depicts
the number of model simulations required by the standard MC for different accuracies (where each symbol
in the solid line represents the NMC for a given e) and by the MLMC (where each dashed line shows the N‘ at
levels ‘ ! L for a given e); and Figure 7d shows the computational time CM‘ for a single model run on
the mesh T M‘ . For example, when e50:05, L 5 1 satisfies the condition that max 0!n!Sj~I nðYLÞj ! e=
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in
the Algorithm (Figure 7a). With L 5 1, the variance max 0!n!S ~V ½gnðYLÞ% is not effectively smaller than
max 0!n!S ~V ½InðQMLÞ% (Figure 7b), which results in a relatively small reduction of NL compared to NMC. As
shown in Figure 7c, for e50:05, when L 5 1, NL 5 71 and NMC5193; the difference is 122 simulations on level
1. Moreover, Figure 7d indicates that the time of a single simulation at level 1 is very fast, suggesting that
the cost of the MLMC at level 1 be close to the total cost of the standard MC. Since the total cost of the
MLMC also includes the simulation time at the level 0, this results in the MLMC less efficient than the stan-
dard MC in the case of e50:05. On the other hand, when e50:01; L5Lmax54 is required (Figure 7a). For
L 5 4, the variance max 0!n!S ~V ½gnðYLÞ% is greatly smaller than max 0!n!S ~V ½InðQMLÞ% (Figure 7b) and this
results in NL 5 1122 and NMC54949 (Figure 7c); the difference is 3827 simulations on the highest level 4.
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Figure 6. Comparison of the computational efficiency between the standard MC and the MLMC methods for a set of desired accuracy e. Figures 6a and 6b compare their computational
time; (c and d) ratios of the calculated RMSE and the desired accuracy e.

Water Resources Research 10.1002/2016WR019475

LU ET AL. AN IMPROVED MLMC METHOD 9655

RMSE accuracy

Figure 7:  Performance of standard MC and 
MLMC in UQ of QoI of a stochastic 
subsurface model with >1000 parameters. 

Figure 8:  To simulate the reality, we have a 
sequence of  E3SM with different spatial 
resolutions. MLMC can evaluate ~10 T170 
models, ~100 T85 models, and ~1000 T42 
models to get accurate prediction 
uncertainty.  

Bayesian neural networks (BNN) can build accurate 
surrogate models based on a small number of model 
simulation results with consideration of model 
uncertainty. We used 900 ELM samples to build an 
accurate surrogate of 49260 annual GPP for 30 
years at 1642 locations. The mean-squared-error 
between the surrogate and ELM simulations of the 
49260 GPP at 100 validation samples is 0.3. Figure 3:  NN and ELM simulation of 

49260 GPP outputs.

GSA is a variance-based decomposition to measure the fractional contributions of 
each parameter towards the total variance of selected quantities of interest (QoIs):

• Total effect Sobol indices

• Sobol indices estimates
• Polynomial Chaos Expansions – exploit orthogonality of basis terms
• Random Sampling – need computationally cheap models

Here we compare the skill of machine-learning models (e.g. deep neural networks) 
with sparse learning techniques to identify the optimal number of parameters that 
are influential for the selected QoIs. 
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Figure 4:  Comparison of 
GSA using polynomial 
chaos-based expansion 
(PCE) vs. a deep neural 
network (DNN) for ELM at 
2 flux measurement sites.

After key parameters are identified using GSA, we construct a surrogate model to 
be used for calibration using observations.  Because of the computational efficiency 
of the surrogate model, we can use Markov Chain Monte Carlo (MCMC) 
approaches for calibration.  In addition to parameter errors, model structural error is 
a major challenge for predictive science.  Predictive skills of climate models do not 
improve due to substantial structural error.  Conventional statistical for bias 
correction do not allow meaningful predictions with corrections, and entangle model 
error with data noise.  Here, we pursue model error embedding approach 
[Sargsyan, et. al. 2015, 2018] which has the advantages of:

• Physics-driven model correction
• Meaningful extrapolation to full set of QoI predictions
• Disambiguation between model error and data noise

Figure 5:  Calibration of 
ELM with latent heat 
flux (LHF) observations 
at the UMBS flux site.  
With the embedded 
model error approach 
(lower figure), posterior 
uncertainties are more 
realistic as compared to 
the traditional 
calibration approach 
(upper figure).

The goal is to reproduce model spatial variations using a network of single column 
simulations.  A simple version of ELM is running at MIT and an interface with an 
optimal experimental design (OED) system is being developed.
Current strategy and next steps:
• OED problem using Bayesian linear-Gaussian setting, with "greedy" selection 

strategy for some simple synthetic problems.
• Provide performance guarantees for the greedy strategy that bound how much 

worse it could be than the combinatorial optimum
The example below illustrates how sites can be selected to best reconstruct the 
original high-resolution model spatial field of a single simulation using a simple 
bilinear interpolation.  In the future, the full OED system will also consider model 
uncertainties.

Figure 6:  Gross primary productivity at 0.5x0.5 degree resolution from ELM (left), and 
reconstructed GPP using 64 selected grid cells (right).  The locations of the 64 points are 
optimized using a genetic algorithm to minimize the root mean squared error between the 
model and interpolated GPP fields.  Here the model is treated as “truth”, but the selected 
points are sensitive to the reconstruction (interpolation) method and model configuration.

Since the release of E3SM version 1, additional progress has been made towards 
efficient ensemble simulations using the single column atmosphere model (SCM).  
We are currently testing this capability and investigating the resources necessary to 
scale from 10s to 1000s of simulations for UQ efforts.

Figure 9:  Workflow for the development 
of a E3SM single column model within 
the Extended V&V for ESM kit (EVE).  
The end result will be a script to enable 
users to run SCM ensembles with 
minimal interaction, benefitting multiple 
projects.  We are also exploring how to 
best take advantage of new 
computational architectures.

We are currently collaborating with the FASTMath and RAPIDS institutes to 
accelerate algorithmic development for our project. With FASTMath, we are 
exploring improved methodologies for surrogate modeling, GSA and calibration.  
With RAPIDS, we are currently exploring improving visualization capabilities and 
artificial intelligence (AI)-based approaches. 

Figure 10:  Using results from simple ELM, we are 
engaging in a partnership with FASTMath Institute to 

explore low-rank functional tensor train 

representations to discover model structure in the 

combined spatial-stochastic spaces.  We are using 

sensitivity analysis and model error embedding to 
calibrate model components that are responsible the 

most for discrepancies between predictions and 

observations.

EDEN Parallel Histogram Summary View

Figure 11:  Visualization of model ensembles using the 
Exploratory Data analysis ENvironment (EDEN), developed 

by the RAPIDS institute.  Efficient visualization of UQ 

results is highly beneficial to this work.

This work will inform E3SM about the key drivers of uncertainty in the land-
atmosphere system.  We envision that this approach can be used to reduce biases 
in future simulations, and to help DOE design new observation systems targeted 
towards reducing model uncertainty. 


