
The basic model of nuclear theory
Major goal: Describe nuclear systems (such as atomic nuclei and infinite matter) 
from a microscopic point of view. In such model the nucleus’ constituents— the 
nucleons (N), i.e., protons (p) and neutrons (n) interact with each other in terms of 
many-body (primarily, two and three-body) effective interactions, and with external 
electroweak probes via effective currents describing the coupling of these probes to 
individual nucleons and many-body clusters of them

Inelastic lepton-nucleus scattering

Beta-decays and Gamow-Teller matrix elements in light-nuclei
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into account. These two-body operators, multiplied by
hadronic form factors so as to regularize their short-range
behavior in configuration space, were then constrained to
reproduce the GT matrix element contributing to tritium
� decay by adjusting the poorly known N -to-� axial cou-
pling constant (see Ref. [19] for a recent summary).

Yet, the calculations of Ref. [11] were based on ap-
proximate VMC wave functions to describe the nuclear
states involved in the transitions. This shortcoming was
remedied in the subsequent GFMC study of Ref. [12],
which, however, only retained the one-body GT opera-
tor. Adding to the GFMC-calculated one-body matrix
elements the VMC estimates of two-body contributions
obtained in Ref. [11] led Pervin et al. [12] to speculate
that a full GFMC calculation of these A=6–7 weak tran-
sitions might be in agreement with the measured values.

The last three decades have witnessed the emergence
of chiral e↵ective field theory (�EFT) [20]. In �EFT,
the symmetries of quantum chromodynamics (QCD), in
particular its approximate chiral symmetry, are used to
systematically constrain classes of Lagrangians describ-
ing, at low energies, the interactions of nucleons and �
isobars with pions as well as the interactions of these
hadrons with electroweak fields [21, 22]. Thus �EFT
provides a direct link between QCD and its symmetries,
on one side, and the strong and electroweak interac-
tions in nuclei, on the other. Germane to the subject
of the present letter are, in particular, the recent �EFT
derivations up to one loop of nuclear axial currents re-
ported in Refs. [23, 24]. Both these studies were based on
time-ordered perturbation theory and a power-counting
scheme à la Weinberg, but adopted di↵erent prescrip-
tions for isolating non-iterative terms in reducible contri-
butions. There are di↵erences—the origin of which is yet
unresolved—in the loop corrections associated with box
diagrams in these two independent derivations.

The present study reports on VMC and GFMC calcu-
lations of weak transitions in 6He, 7Be, and 10C, based on
the Argonne v18 (AV18) two-nucleon [25] and Illinois-7
(IL7) three-nucleon [26] interactions, and axial currents
obtained either in the meson-exchange [19] or �EFT [23]
frameworks mentioned earlier. The AV18+IL7 Hamilto-
nian reproduces well the observed spectra of light nuclei
(A=3–12), including the 12C ground- and Hoyle-state
energies [3]. The meson-exchange model for the nuclear
axial current has been most recently reviewed in Ref. [19],
where explicit expressions for the various one-body (1b)
and two-body (2b) operators are also listed (including fit-
ted values of the N -to-� axial coupling constant). The
�EFT axial current [23, 27] consists of 1b, 2b, and three-
body (3b) operators. The 1b operators read
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where ⌧i,± = (⌧i,x ± i ⌧i,y)/2 is the standard isospin rais-

ing (+) or lowering (�) operator, and �i and �iri are,
respectively, the Pauli spin matrix and momentum oper-
ator of nucleon i. The 2b and 3b operators are illustrated
diagrammatically in Fig. 1 in the limit of vanishing mo-
mentum transfer considered here. Referring to Fig. 1,
the 2b operators are from contact [CT, panel (a)], one-
pion exchange (OPE) [panels (b) and (f)], and multi-pion
exchange (MPE) [panels (c)-(e) and (g)],
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and the 3b operators are from MPE [panels (h)-(i)],
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Configuration-space expressions for these 2b and 3b op-
erators are reported in Ref. [27].

FIG. 1. Diagrams illustrating the (non-vanishing) contribu-
tions to the 2b and 3b axial currents. Nucleons, pions, and
external fields are denoted by solid, dashed and wavy lines,
respectively. The circle in panel (b) represents the vertex im-

plied by the L(2)
⇡N chiral Lagrangian [28], involving the LECs

c3 and c4. Only a single time ordering is shown; in particular,
all direct- and crossed-box diagrams are accounted for. The
power counting of the various contributions is also indicated.
See text for further explanations.

The 1b operator in Eq. (1) includes the leading or-
der (LO) GT term and the first non-vanishing correc-
tions to it, which come in at next-to-next-to-leading or-
der (N2LO) [27]. Long-range 2b corrections from OPE
enter at N3LO, panel (b) in Fig. 1, involving the low-
energy constants (LECs) c3 and c4 in the sub-leading

L(2)

⇡N chiral Lagrangian [28], as well as at N4LO, panel (f).
In terms of the expansion parameter Q/⇤�—where Q
specifies generically the low-momentum scale and ⇤�=1
GeV is the chiral-symmetry-breaking scale—they scale as
(Q/⇤�)3 and (Q/⇤�)4, respectively, relative to the LO.
Loop corrections from MPE, panels (c)-(e) and (g), come
in at N4LO, as do 3b currents, panels (h)-(i). Finally, the
contact 2b current at N3LO, panel (a), is proportional to
a LEC, denoted as z0.
The short-range behavior of the 2b and 3b operators

is regularized by including a cuto↵ C⇤(k)= exp(�k4/⇤4)

Objectives: 
• Compute inelastic electron-nucleus scattering for 

which accurate experimental data are available 
• Within the same formalism, study the neutral-current 

and charge-current response functions that are 
important inputs for neutrino-nucleus scattering  

• Test electroweak current operators, including two-
body operators

Accomplishments: 
• Development of an algorithm to compute the 

Euclidean response functions within GFMC 
• Using Maximum Entropy technique to obtain 

the response functions from the Euclidean 
response
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GFMC calculation of EM response in 12C
Carlson and Schiavilla (1992); Lovato et al. (2013–2016)
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 Coulomb sum

• EM longitudinal (right panel) and transverse (left panel) response function of 12C for q=570 MeV/c with 
only one-body currents (red) and also two-body currents (black) are compared with experiment data (blue)

Objectives: 

Accomplishments: 
• GFMC calculations of Gamow-Teller matrix 

elements (right panel) for light-nuclei at lowest-
order theory of one-body currents (blue) using 
AV18+IL7 

• Including two-body currents (magenta), there is 
an overall improvement of the theoretical 
predictions compared to the experimental data 
(black): some issues with 10C

• Understand weak properties and transition 
rates of light-nuclei  

• Test nuclear interactions and weak current 
operators, including complete two-body 
currents up to one loop (left panel)  

• Address long-standing problem “quenching” 
of       required from shell-calculations: this is 
relevant for neutrinoless double-beta decay

gA

Larger nuclei and infinite neutron matter

• Validate theoretical framework for nuclear forces and current operators in heavier nuclei, including 
neutron-rich nuclei important in the r-process, and infinite nuclear matter

Objectives: 

Accomplishments: 

Currents: many-body effective 
electroweak operators

Inputs for the basic model:

Hamiltonian: many-body effective 
interactions between the nucleons (N) H =
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Theoretical approaches
• Phenomenological: two-body Argonne V18 (AV18) + three-body Illinois-7 (IL7)

• Chiral effective field theory (𝝌EFT): two- and three-body local chiral interactions 

Objectives: 

Accomplishments: 

Objectives: 

Spectra of light-nuclei A≤12

• Study the spectra of light-nuclei: theory confronts 
experiment 

• Validate theoretical framework used to derive 
nuclear interactions 

• GFMC calculations of the spectra of nuclei up to 
A=12 using Delta-full local chiral interactions (red) 
compared with the ones obtained using AV18+IL7 
(cyan) and experimental data (green)

Magnetic moments and electromagnetic decays in light-nuclei

• Understand electromagnetic properties and 
transition rates of light-nuclei  

• Test nuclear interactions and electromagnetic 
current operators, including complete two-body 
currents 

Accomplishments: 
• GFMC calculations of magnetic moments (right panel) 

and electromagnetic decays (left panel) using AV18+IL7 
at lowest-order theory of one-body currents (blue) 
disagrees with experiment (black)

• Including two-body currents based on effective field 
theory (red) improves all predictions

EM transitions: 
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Magnetic moments in A  10 nuclei
Pastore et al. (2013)

GFMC calculations use AV18/IL7 (rather than chiral)
potentials with �EFT EM currents
Predictions for A > 3; about 40% of µ(9C) due to
corrections beyond LO
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Magnetic moments: 
• Realistic two- and three-body interactions based AV18+IL7 and 𝝌EFT have been used in AFDMC to 

study properties of selected close shell nuclei up to A=16 and EoS pure neutron matter (left panel) 
• Realistic two- and three-body interactions based AV18+IL7 have been used in CVMC to validate the 

computational approach in 16O and then used to study properties of 40Ca (right panel)
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Quantum Monte Carlo methods
Physical problem: Calculate the structure and reactions of light-nuclei including 
spectra, form factors, transitions, low-energy scattering and response as well as 
equation of state (EoS) of infinite matter. Compare the theoretical results with the 
experimental data

Numerical method: Use Quantum Monte Carlo (QMC) methods to solve the many-body 
Schrödinger equation for two- and three-body interactions

• (Cluster)Variational Monte Carlo, (C)VMC 
• Green’s functions Monte Carlo, GFMC 
• Auxiliary Field Diffusion Monte Carlo, AFDMC

H  (R; s1, .., sA; t1, .., tA) = E (R; s1, .., sA; t1, .., tA)

3A coordinates in r-space Nucleon spin Nucleon isospin (p or n)

Figure by Diego Lonardoni LANL

3Quantum Monte Carlo methods

Goal: solve the many-body problem for correlated systems in a non perturbative fashion

GFMCVMC AFDMCCVMC

A

Pros:
‣ Work with bare interactions. 
‣ Good for strongly correlated systems. 
‣ Stochastic method: errors quantifiable and systematically improvable.

Cons:
‣ Some limitations in A and/or in the interaction to be used.

minimization
E ! E0E � E0

� ⇠ 1/
p
N

⌧ propagation AFDMC 

CVMC     
AFDMC

(C)VMC 
GFMC 
AFDMC

light systems A  12

A ⇠ 50

A ! 1infinite matter

light to medium- 
heavy nuclei
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The basic model of nuclear theory
The basic model of nuclear theory: achieving a comprehensive description of the wealth of 
data and peculiarities exhibited by nuclear systems

Nucleon-nucleon (NN) and 3N scattering data; 

Spectra, properties, and transition of nuclei; 

Nucleonic matter equation of state; 

……

Electroweak current 
operators: jEW =
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The Basic Model
! The nucleus is a system made of A interacting nucleons, its energy is given by

H = T+V =
A

∑
i=1

ti+∑
i<j
υij+ ∑

i<j<k
Vijk+ ...

where υij and Vijk are 2- and 3-nucleon interaction operators

! Current and charge operators describe the interaction of nuclei with external
fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

ρ =
A

∑
i=1

ρi+∑
i<j
ρij+ ... , j=
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∑
i=1
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i<j
jij+ ...

q
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N N

γ

! EM current operator j satisfies the current conservation relation (CCR) with the
nuclear Hamiltonian, hence V, ρ , j need to be derived consistently

q · j= [H, ρ ]
CCR does not constrain transverse (orthogonal to q) currents
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th+expInputs for the basic model:

Many-body interactions 
between the constituents

One-body Two-body (NN) Three-body (3N)
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- local chiral two-body interactions contains parameters called low-energy constants 
(LECs) that are fixed by fitting NN scattering data 

- the fits to data of some of these local interactions have been performed by using 
POUNDERS, a SciDAC-supported derivative-free optimization solver available in 
PETSc libraries

• Comparison with “unquenched” shell model calculations (green) based on the inclusion of one-
body current operators: important role of correlation in the wave functions

PROS:

• Keeping track of every nucleon’s spin and isospin states: in GFMC these 
states are summed explicitly, while in AFDMC they are sampled. GFMC is 
more appropriate for light-nuclei, AFDMC for heavy nuclei and matter

• QMC does not require a basis expansion or fixed grids and works with bare 
interactions

CONS:

▪ADLB API: 
– ADLB_Put 
– ADLB_Reserve 
– ADLB_Get_reserved 

▪Arguments allow construction of many algorithms 
– E.g. multiple parallel loops across the whole machine 

▪Performance:  
– Scalable – supports GFMC on largest machines 
– Flexible – work units from milliseconds to seconds

Application Processes
ADLB Servers

Computer Science impact via SciDAC on GFMC:

ADLB and DMEM rely on MPI for interaddress space communication

Ab-initio Nuclear Structure and Nuclear Reactions Gaute Hagen

initio calculations of important scattering and reactions involving ↵-particles practical. The method is em-
barrasingly parallel and the code, NLEFT is fully implemented on GPU’s and thus requires very little data
movement between device and host memory. Checkpoint/restart is implemented for fault tolerance and for
running longer jobs.

3.3 Parallel Performance
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Figure 4. Scaling plots on relevant systems for all applications used in this proposal.

GFMC. Fig. 4a shows good strong OpenMP scaling on a Theta node with 1 to 10 MPI ranks running on
the node. Fig. 4b shows good weak scaling up to 3168 nodes of nodes of Theta. Six ranks with 10 threads
each were used on each node. Finally, Fig. 4c shows good weak MPI scaling on Mira using 8 ranks/node
and 6 OpenMP threads per rank.

MFDn. Fig. 4d shows good strong scaling on up to 32,768 nodes (using 64 OMP threads per node) on Mira
for the two most time-consuming parts of MFDn. Fig. 4e shows good strong scaling up to 64 threads on a
KNL node, with slight performance improvement from utilizing the hardware threads. Runs were performed
in quad-flat mode, with careful placement of the eigenvectors on high-bandwidth memory (HBM).

NCSMC. Fig. 4f shows good strong scaling up to 35,000 cores on Titan using 2 ranks per node 8 threads
per rank without GPU’s for the NCSM-RGM module of NCSMC.

NUCCOR. Fig. 4g shows the strong scaling of a full application run to compute the ground-state in 48Ca
with iterative triples excitations, using up to 1024 nodes on Summit on a log-log scale. We achieve more
than 4 times speedup going from an optimzed CPU-only version to a GPU version. The benchmark run was
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GFMC is a hybrid code using both MPI and OpenMP parallelism
•  The Asynchronous Dynamic Load Balancing (ADLB):

• Distributed Memory (DMEM):

- library that implements a flexible and scalable scheduling and load-balancing system for 
work units of varying types, sizes, and priorities

- manages work sharing without the bottleneck of a single master controller

- carries out memory load balancing by storing large arrays on any node with enough 
memory and subsequently fetching them when needed

- manages memory on all clients. Runs as separate thread, sharing memory with application 
processes, so local operations are fast: great improved performance of ADLB in GFMC

▪DMEM API: 
– DMEM_Put 
– DMEM_Get 
– DMEM_Free 
– DMEM_Copy 
– DMEM_Update

The basic model of nuclear theory: from atomic nuclei to infinite matter


