Advanced Tokamak Modeling Environment for Fusion Plasmas: Physics
J.M. Park1, D.L. Green1, J. Candy2, O. Meneghini3, C. Holland3 and ATOM Team
1ORNL, 2GA, 3UCSD

Introduction

ATOM core-edge integrated workflows

Guiding philosophy of ATOM - take a bottoms-up, collaborative approach that focuses on supporting, leveraging, and integrating the wide spectrum of existing research activities throughout the US fusion community, to grow and improve a Whole Device Modeling (WDM) capability that has broad community support and buy-in. In practice, this means developing flexible software environment and workflows to couple existing and in-development physics component.

ATOM provides two core-edge integrated workflows:

1. OMFIT-based fast Whole Device Modeling
2. IPS-based High Performance Computing Whole Device Modeling, enabling a wide range of physics studies, even totally new

OMFIT-based fast WDM

IPS-based HPC WDM

- Use machine learning accelerated models for EPED, NED, and TGLF
- Transfer data between components using ORAS

One step closer toward a WDM capability

Self-consistent profile prediction from magnetic axis to wall

- Iterative solution procedure to match boundary conditions between the core, edge pedestal, and SOL
- Self-consistent profile across the regions, especially separatrix values
- Enable study of strong interaction between the regions

First-principle model, performance, connect to ATOM workflows

Future recalibration of TGLF with CGYRO

TGLF: the heart of ATOM profile-prediction capability

- Linear gyro-Landau-fluid eigenvalue solver
- Saturated potential intensity derived from a database of nonlinear GYRO simulations
- Database resolves only long-wavelength turbulence: $k_T < 1$

CGYRO: generate future database for TGLF calibration

- New nonlocal spectral solver for collisional edge
- Arbitrary-wavelength spectral formulation
- Designed from scratch for multiscale

CGYRO simulation: low rotation DIII-D ITER baseline discharge

- Nearly all electron flux arises from multiscale regime
- Experimental value $Q_{\text{rms}} = 8$ accurately recovered

Physics and scenario exploration

From present-day experiments to ITER and beyond

Ex.

- **Present-day experiments**
 - CGYRO simulation: low rotation DIII-D ITER baseline discharge
 - Experimental value $Q_{\text{rms}} = 8$ accurately recovered

Future reactor design

- **Support ITER**
 - Validate WDM, identify modeling gaps
 - Drive new development

- **Future reactor design**
 - Design next step U.S. reactor
 - Develop advanced tokamak path to a future reactor

Optimize, find new regimes

Enabled by efficient utilization of HPC resources

- Multi-dimensional parametric scan
 - B_n, l_n, density, P_w, P_e
 - Monte Carlo sampling
 - Each point: fully theory-based integrated modeling

- Parameterize key performance
 - $Q_{\text{rms}} = Q_{\text{rms}}^\text{ideal}
 - $(S_w - S_w^\text{ideal})^2 = B_n 0.5 P_e 0.5 0.5 0.5$

- Search optimum design/operation point

Validation and uncertainty quantification

Tightly coupled to ATOM workflows and physics studies

- Initial focus: in-depth core transport model studies
 - Ex. TGLF captures core plasma response to heating changes in low-mode mode plasmas

- Next step: extend to multi-component modeling
 - Ex. Core-edge-impurity coupling – Can we predict response of impurities in core and pedestal to changes in RF heating?

ATOM Use Cases

Entry point for collaboration with ATOM

- ATOM validation and scenario modeling will be organized about benchmark use cases
 - Well-documented datasets describing plasma discharges of interest for component and workflow validation
 - Use cases provide clear way of benchmarking competing models, tracking improvements, assessing real-world performance

Each use case will include

- Magnetic equilibria and profile data in accessible format
- Relevant supporting data and analysis (power balance data, fluctuation measurements, MHD mode amplitudes)
- Provenance documentation (publications/models)

Candidate use cases

1. DIII-D L-mode shortfall, ITER baseline, steady-state discharges
2. Alcator C-Mod LOC/SOC plasmas, EDA H-mode toroidal field scan
3. ITER inductive, hybrid, and steady-state scenarios
4. ARIES ACT-1/ACT-2 reactor scenarios
5. ...