Bringing Global Gyrokinetic Turbulence Simulations to the Transport Timescale using a Multiscale Approach

Jeff Parker [parker68@llnl.gov], L. LoDestro, L. Ricketson, A. Campos, J. Hittinger (LLNL); D. Told (IPP); G. Merlo (UT Austin); F. Jenko (UT Austin/IPP)

Vision: Global gyrokinetic simulation coupled to transport solver, as ke component of high-fidelity WDN

(Some terms suppressed, for simplicity)

ons ev	Method for nun	neric	
Λ	 Paradigm transport equation Assume turbulent flux Γ[n] is can from a simulation 	omputed	
in the core ore	Solve using an <i>implicit timestep</i> (so we • Stiff nonlinear problem – Γ[n] depen • What method for converging to self-	are not c nds strong -consister	
a long e evolution of files, e.g., $T(r)$	Key Elements of our method (More detated by Represent turbulent flux as diffusive (+ provide the convective), with numerically computed, transport coefficients	ail in [1,2 bossibly evolving	
hent time ~ 1 s	Variant of Picard iteration (no Newton st Jacobian-vector products or any finite-d estimation of derivatives	eps) – N ifference	
	Computationally advantageous		
efficiently ow do we	This gives a tractable, linear equation to $\frac{n_{m,l} - n_{m-1}}{\Delta t} + \partial_x \Big[-D_{m,l} + D_{m,l} \Big]$	solve fo $_{-1}\partial_x n_{m,l}$	
5	If it converges, it doesn't matter how y turbulent flux: it's the right answer	ou repre	
global	Method is robust to turbulent fluctuations: Fluctuations in the turbulent flux always occur in simulations. This method is robust.	10^{1} (a) 10^{0} 10^{-1} 10^{-2}	
	Example: analytic model for $\Gamma[n]$ with added random noise. Solution still converges to the correct solution. Shown: Error decreases to an acceptably small level.	$ \begin{array}{c} 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-4} \\ 50 \\ 17 \end{array} $	
	Contrast this method with a Newton-	type of	
$\frac{1}{\tau} \sim \epsilon^2$	would Taylor expand the turbulent flux: $\Gamma_{m,l} = \Gamma[n_{m,l}] \approx \Gamma[n_{m,l}]$	$l_{l-1}] + \frac{\delta\Gamma}{\delta n}$	
	This procedure requires calculation of	Jacobia	
<u>m of</u> er	Computationally expensive to products. This problem is exace simulations, where turbulence ca everywhere (i.e., dense Jacobiar	 Computationally expensive to calculate products. This problem is exacerbated for simulations, where turbulence can deper everywhere (i.e., dense Jacobians) 	
on) Surface-averaged	 Fluxes are intrinsically noisy due simulations. Errors are amplifie Jacobian 	to statis ed in a fi	
profiles (temperature, density, etc.)			
on cs)	Code implementing this approach Tango is:	<u>: Tango</u>	
	 D transport solver implementing Coupled with global GENE Written in Python and open solver 	urce, ava	

cal coupling

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial \psi} \Gamma[n] = S$$

constrained to tiny Δt) gly on the profile nnt solution within a timestep?

Let $n_{m,l}$ be the *l*th iterate of the *m*th

 $\Gamma_{m,l} \to -D_{m,l-1}(\partial_x n_{m,l}) + c_{m,l-1} n_{m,l}$

$$c_{m,l-1} \equiv (1-\theta) \frac{\Gamma[n_{m,l-1}]}{n_{m,l-1}}$$

 $D_{m,l-1} \equiv -\theta \frac{\Gamma[n_{m,l-1}]}{2}$

or each iterate $n_{m,l}$:

$$+c_{m,l-1}n_{m,l}\Big]=S_m$$

esented the

iteration, which

$$\Big|_{n_{m,l-1}} \cdot (n_{m,l} - n_{m,l-1})$$

an terms $\delta\Gamma/\delta n$. Two

e Jacobians or Jacobian-vector or global turbulence nd in principle on the profiles

stical fluctuations of turbulence inite-difference calculation of

numerical method

ailable at github.com/LLNL/tango

Lawrence Livermore National Laboratory

Results

07NA27344.

performed under the auspices of the US DOE by LLNL under Contract DE-DE-AC52-