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Results

Vision: Global gyrokinetic simulations Method for numerical coupling

Paradigm transport equation on 0 \ /T ango-global GENE run: Successfully found steady state \

coupled to transport solver, as key
component of high-fidelity WDM /
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Assume turbulent flux [[n] is computed 57 = 57 n] =5 temperature profile for a specified input heating power
from a simulation
« GENE parameters: _
Solve using an implicit timestep (so we are not constrained to tiny At) * Domain: £ € [0.1,0.9] Q N
«  Stiff nonlinear problem — I'[n] depends strongly on the profile n « a=1.0m, R,=3.0m -c; 0.0
. _ « What method for converging to self-consistent solution within a timestep? « Bref=2.5T, mref=2 8
(Cross section of torus) Turbulent fluxes in the core are . p.=1/292 )
small, resulting in long « Circular geometry, adiabatic electrons, CBC-like EMI
| g Temperaur timescales for the evolution of Key Elements of our method (More detail in [1,2])  Let ny,; be the ith iterate of the mth . Tango parameters: %ji:
/ é | macroscopic profiles, e.g., T(r) » Represent turbulent flux as diffusive (+ possibly timestep. + Domain: € [0,0.9] . | —
Nested/ . o . . . . a Isf@° T T T T T T —
magnetic FErr L convective), W'_th numerically computed, evolving - I 5 + Looking for a steady-state solution with an applied heat source | = 1§ :(i:ﬂtia, ________ . Z
curfaces | transport coefficients ml = =D 1-1(0xNm 1) + Cm1—17m. 1 « Relaxation EWMA parameter a = 0.3 (fairly large) 0 e
Turbulence time ~ 10 us . 50 iterations 30— —
I I F[nm l_l] _ _ _ . S 25| iteration 4
Energy confinementtime ~1s » Variant of Picard iteration (no Newton steps) — No Dpi—1 = -0 PR ,1—1 * 50 GENEtlme units (Lref/cref = R/vti) p(?r |t.erat|on | ? ig - 1/ ]
Jacobian-vector products or any finite-difference I‘[n ] + Fvoling fon pressure only; density profile is prescribed and I 2
Direct numerical integration capturing both turbulence and estimation of derivatives Cm—1 = (1 —0) o + Boundary conditions: Vo o1 oz 03 o4 05 05 07 05 09
confinement time scales > computationally expensive! * r=0:Neumann e
» Computationally advantageous - r/a=0.9: Dirichlet, fixed pressure/temperature
A min ration of tim | <ts h tficient « Applied heat source 20 MW localized in 0.15 <r/a < 0.55
>sUMIng a separation of tiImescales exists, how can we eticiently This gives a tractable, linear equation to solve for each iterate n,, ;:
study the self-consistent evolution on the long timescale? How do we '
bridge the timescale gap? Mml = Wm=1 5 D 0.n  +cminm | = S, . . . Achieved same steady-state
A+ 1—1 0 A—1Tm, 1 RGgUlred COr.npUtatl.Onal .tlme | solution, starting from different
| Thlsf example: 30-50 iterations requ_lred to initial conditions (dashed lines)
Vision: Multiscale method to exploit the timescale gap. it cONverges, 1 doe§n’t matter how you represented the attain co_nverg_ed s_teady-state solution: total S 2of
- Couple a transport solver with gyrokinetic simulation for calculation of fluxes turbulent flux: it's the right answer GENE SImUIatrllon tm:ce OL;I'SOO B 2|500 R/ 2 50|
« Challenge: Need efficient methods and algorithms for coupling directly with global (~35,000 cpu hours for this example) égfg:
turbulence simulation Method is robust to turbulent . a=01 o 0?=9x10% | o | = Fus
fluctuations: nE 0?10 ) T acoa Estimate of time In physical units: . 5
— ]  0?2=10"% | = 1n_1 ] —— a=0.01 - - - i ' S
Fluctuations in the turbulent flux 5 _ | — —| 5 . | * Confinement time estimate: tg ~ p_i; ~55ms !
Benefits: High-fidelity predictive turbulence + transport always occur in simulations.  This ¢ | I~ £ 102 M* » Simulation time ~ 15 — 23 ms . g
simulations. Can be a key component of a whole-device model method is robust. f | S s sf
« Transport at the confinement timescale, using best available gyrokinetic _ . : 10° 100 < o % ey 3
simulations as a high-cost, high-benefit alternative to computationally Example: analytic model for F_[n] W't_h 5 107 N\ 5 107 \\ \\ P,
cheaper quasilinear transport models added random noise. Solution still &0~ AQ\P\?{,\ T vnl“v lmﬂr\,\ \ O e /
- Nonlocal effects - e.g., internal transport barriers (ITBs) converges 1o e coiee.  solino. 12: YV i: i
- Enabling a new form of discovery science SR Sl RIEEEERES O ECh 50 100 150 200 100 0t 102 10°
acceptably small level. teration number lteration number
. cal Back 1 Goals and Moving Forward
eoretica ac round. Contrast this method with a Newton-type of iteration, which
. dnotics ordering. | ¢ P ki of 6Bl |9E| N | would Taylor expand the turbulent flux: | _ | o _ o
applicable to core of a okamak. | @ L "k T 7 B g "¢ R~ O o~ d 5T / Ratchet up to increasing physics fidelity — requires generalizations ofx
of -y 1.2 _ g g = Dlnmal ~ Vi) + 50 | (= Mm-1) the coupling method, handling multi-channel turbulent transport, etc.
— +v-Vf+ =|E+vxB| - -+ = rm, i1 - . -
& m ov This procedure requires calculation of Jacobian terms 6T’ /én. Two » Synergies with AToM possible?
Can derive: i problems: . . .
Schematic Diagram of . Computationally expensive to calculate Jacobians or Jacobian-vector * Simulate frontier physics, such as ITBs
Transport Equations (slow Numerical Solver roducts. This problem is exacerbated for global turbulence : T S
timescl?ale 1%) ( P . P giobal i .  Demonstrate real-world value by enabling quantitative predictions for
, simulations, where turbulence can depend in principle on the profiles .
5 1 everywhere (i.e., dense Jacobians) experiments
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39 L5 (Macro-scales, slow evolution)  Fluxes are IntrlnSICaIIy NOISY due to statistical fluctuations of turbulence
2ot TyiaplV(Q V)] =5 simulations. Errors are amplified in a finite-difference calculation of References
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