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•Predictive framework for fission gas behavior involves hierar-
chies of models across multiple scales, e.g. density functional
theory (DFT) calculations (VASP code), molecular statics,
cluster dynamics (MARMOT code)

• Input parameters for models at each level are estimated from
available experimental data or some high-fidelity models

•Desire estimates of confidence in predictions and identification
of primary sources of uncertainty with respect to quantities of
interest (QoIs)

•UQ approach: deploy statistical methodologies to efficiently
represent mappings from uncertain model inputs to uncertain
outputs (propagation), identifying critical input parameters
that affect QoI uncertainty (sensitivity), constructing robust
representations of input parameter uncertainty as informed
form available data (statistical inference)

Background

Identify how model QoIs respond to variation of the model inputs

•Employ a variance based approach, utilizing decomposition of
QoI variance invoking the laws of total variance and expectation

•Compute approximations to Sobol indices [1, 2]. The first order
indices for each input parameter (Si) are the fractional contri-
butions of the variation of each parameter alone to the total
variance of the QoI. Estimating using Monte Carlo integration:
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Sensitivity analysis

•Current empirical models based on experimental data divide
the diffusion coefficient for Xe in UO2 nuclear fuel into three
ranges

– D1 at high temperature is assumed to be independent of ra-
diation effects (radiation effects are quickly annealed at these
temperatures)

– D2 at intermediate temperature is increased compared to D1

as a consequence of radiation damage raising the concentra-
tion of vacancies in the material

– D3 is caused by direct interaction with the thermal spikes
caused by fission of 235U

Left: empirical model. Right: simulation using point defect
dynamics

•Existing attempts to calculate D1 and D2 in the literature
underestimate the diffusion rate compared to the empirical
model/experiments.

• Low D1 and D2 either due to method issues and/or neglect of
important mechanisms, in particular extended clusters under
irradiation.

•Calculate D1 and D2 fission gas diffusion through simulation of
point defect dynamics (small cluster dynamics model in MAR-
MOT) informed by DFT calculations and molecular statics.

•The DFT calculations were performed with the VASP code
using a combination of LDA+U (thermodynamic properties of
defects) and GGA+U (defect migration barriers).

– The Hubbard +U term is included to improve the description
of the correlated U 5f electrons.

– GGA+U is used for barriers, because the LDA+U barriers
were shown to be too low in relation to experimental data.

– All defects are modeled as fully charged using the standard
approach of adding and removing electrons to the system,
including corrections for the mono-pole interaction between
defects and shifts of the electrostatic potential.

– All calculations were performed based on a 3×3×3 supercell
expansion of the Fluorite unit cell.

– The atomic positions, supercell volume and shape were fully
relaxed for thermodynamic defect properties.

– The NEB calculations for migration saddle points were per-
formed at fixed volume using five images.

Xe-vacancy clusters
•Molecular statics calculations were used to estimate defect en-

tropies and attempt frequencies for migration based on the fi-
nite displacement method for calculating phonon spectra.

– The calculations were based on the Cooper-Rushton-Grimes
(CRG) potential, which adds a MEAM term to the tradi-
tional Buckingham form in order to capture many body in-
teractions.

– The entropies were calculated with the potential at constant
volume and then adjusted for volume change based on DFT
calculations.

•The concentration of point defects (uranium vacancies and in-
terstitials) and Xe clusters under irradiation were calculated
based on cluster dynamics theory. Oxygen defects were as-
sumed to be in thermal equilibrium at the temperatures of
present interest.

•The cluster dynamics model was solved in the MARMOT code,
with the defect formation energies and entropies as well as Xe
cluster binding energies and entropies obtained the from atom-
istic simulations.

•The diffusivities can be calculated as an average of the cluster
concentrations and their mobility.

Density Functional Theory (DFT), molecular
statics, and cluster dynamics simulations

Concentration

Diffusion coefficient

Cluster dynamics simulation example

Initial UQ efforts involve collection of uncertainty assessments
of code input parameters. Generally uncertainty is specified as
nominal parameters values (means) and standard deviations for
unbounded parameters interpreted as Gaussian, and as means
and standard deviations of log-normal distributions for parame-
ters that are strictly positive.
Generally four parameters are specified for each of the 46 species:

•DFT energy (Gaussian)

•MD entropy (Gaussian)

•Migration barrier (log-normal)

•Attempt frequency (log-normal)

MD entropy (VU2)

DFT energy (UO2)

Migration barrier (VU)

Attempt freq. (VU2O2)
Input parameter uncertainty structure (PDFs) for select inputs

Computing sensitivity indices in this setting involves drawing
samples from these assumed distributions for the evaluation of
a multidimensional output, i.e. diffusion coefficients for each
species, with Sobol indices computed for each output element
separately using eq. 1.

UQ in diffusion coefficient estimationWhen data are available, typically as noisy signals from exper-
iment probes, we can perform Bayesian statistical inference to
estimate the parameters of a stochastic model for the data, e.g.
for a data modelM:

z = f (β) + ε (2)

where z is some noisy data, f (β) is a model parametrized by
a set {β} for the underlying ’true’ data obscured by the noise,
and ε is a stochastic element that models the noise (in this case
additively). Invoking Bayes’ rule:

pposterior(β|z) =
plikelihood(z|β)pprior(β)

p(z)
(3)

our state knowledge of the parameters β given the noisy data
z can be expressed as a posterior probability density function
(PDF) pposterior (β|z), which updates any prior knowledge of
the parameters β as represented by a prior PDF, pprior (β),
with likelihood function relating z to possible instances of β
constructed using the data model (eq. 2).

•Compute posterior PDF numerically using Markov chain
Monte Carlo (MCMC) methods

•Posterior PDF reveals important correlations between param-
eters (expected for physics-based models)

•Analysis of p(z) (i.e. implicitly p(z|M)) for different choices
Mi (eq. 2) allows for optimal selection of Mi that is most
consistent with the data

•When data is unavailable, have recourse to maximum-entropy
(MaxEnt) inference techniques [3]

Statistical parameter inference
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Efficently represent uncertain input-output mapping using poly-
nomial chaos expansions (PCEs) [4]. For a QoI f (β):

f (β) ≈=

K−1∑
k=0

ckΨk(ξ). (4)

an orthogonal polynomial expansion in e.g. Legendre polynomials
(Ψk) of a uniform random variable ξ

•Coefficients determined using runs of the model

•Coefficients can be estimated using Galerkin projection with
quadrature, Bayesian least-squares, Bayesian compressive sens-
ing (regularization)

Polynomial chaos expansions

Basis adaptation:

•QoIs are often low-dimensional, variation depends on some
combined variation of the input parameters

•Discover a sparse PCE representation using a rotation of the
original PCE basis

Multi-level multi-fidelity methods:

•QoIs can often be estimated using cheaper coarse or lower-
dimensional simulations

•When such approximations of the QoIs are available, correla-
tion between high and low fidelity estimates of the QoI can be
leveraged to accelerate estimation, e.g. coefficients of PCEs

Extensions


