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Abstract Results: ELM Heat Pulse iiof Dynamic Plasma-Wall Coupling
The PSI SciDAC is developing coupled models for the dynamic interaction COGENT solves the guiding center kinetic equation in slab geometry . Mo Our first goal is to test the explicit coupling strategy Recychng Coefficient
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using the 3D BOUT++ framework. Ultimately, we will couple these models 0 |
together with microscopic models of the walls and study the physics of the The ELM heat pulse benchmark [7-8] is specified by imposing Maxwellian source . ]
coupled system. . TER with T=1.5 keV and S=9.1x1023/m3; initial conditions chosen to match Ref. [8]. Example of a dynamic simulation of an initially pure _ q- N \/
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extreme particle and heat loads. However, such predictions are challenging z? - ! Coupling time step increases exponentially as
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Moreover, the plasma fluxes are dominated by intermittent and turbulent events, Results for 0.4 MW ELM pulse [Tz~ —= CO"CI USIoONsS RSP IR D
such as ELMs, which are intense filamentary structures that are ejected from the lasting 200ps :, _ _ _ _ e e et
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emission collisionless simulation
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In order to develop predictive capability, high-fidelity models for both the edge I T
plasma and material PFCs must be coupled together. We plan to study the Drift-Resistive Ballooning Mode  Divertor-relevant turbulence model is being developed within BOUT++
physics as well as the dependence of simulation performance on the choice of : i N e framework
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BOUT++ Divertor Turbulence Model

Divertor turbulence has characteristics of curvature-driven 0
drift-resistive ballooning modes (DRBM) at the midplane |
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Initial tests of dynamic recycling between coupled plasma and wall codes

Conformal ; | and electron temperature (T.) gradient driven conducting  °®" %% &% ;/i 0o wo e have been performed
mapping can be 2 i R wall modes (CWM) in the pre-sheath region near the . - PFCs are observed to load with H particles until a slowly evolving quasi-
used to simulate ) divertor target. Plasma model equations: - lines -analytc . equilibrium state is achieved
divertor geometry . IN. | JT o DRSS | - Future work will focus on coupling more complex plasma and wall models
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