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❖ Introduction and Motivation

❖ Conclusion

➢ The Hubbard and t-J models are widely regarded as the starting point

to understand high-Tc superconductivity, such as cuprates.[1-2]

➢ Enormous effort has been devoted to studying the properties of the

models at intermediate couplings, however, no general theoretically

controlled methods or consensus.[1-2]

➢ Previous studies suggest striped ground state with unidirectional

charge-density-wave order, many low-lying states close in energy.

However, no direct evidence for the presence of superconductivity.[3]

➢ Question: Can we have long-range superconductivity in doped

Hubbard and t-J models on square lattice wider than 2-leg ladder?

✓ The ground state of the lightly hole-doped Hubbard and t-J models is

a Luther-Emery liquid with a gap in the spin sector.

✓ Both superconducting order and charge-density-wave order are

quasi-long-ranged.
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❖ Hubbard Model and DMRG study [4-5]

✓ N=Lx*Ly, Ly=4, Lx=16~64, hole doping δ=1/8

✓ Isotropic hopping t=1, t’=-0.25, and U=8~12

✓ Keep m=4096~20000 states with ~100 sweeps

1) Charge-density-wave order (CDW)
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Quasi-long-range SC: Φ𝑦𝑦 𝑟 ∼ 𝑟−𝐾𝑠𝑐 Φ𝑦𝑦 𝐿𝑥/2 ~(𝐿𝑥/2)
−𝐾𝑠𝑐

3) Spin-spin correlation

Short-range spin correlation

𝐹 𝐿𝑥/2 ~𝑒−𝐿𝑥/2𝜉𝑠

4) Luther-Emery liquid [6]
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❖ t-J Model and DMRG study [7]

✓ N=Lx*Ly, Ly=4, Lx=16~128, hole doping δ=5%~12.5%

✓ Isotropic hopping and spin interaction t=3, J=1

✓ Keep m=2187~15000 states with ~100 sweeps
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2) Superconductivity (SC) 𝛼 = ො𝑥, ො𝑦 D-wave symmetry

1) Charge-density-wave order (CDW)
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2) Superconductivity (SC)

Quasi-long-range SC: Φ𝑦𝑦 𝑟 ∼ 𝑟−𝐾𝑠𝑐 Φ𝑦𝑦 𝐿𝑥/2 ~(𝐿𝑥/2)
−𝐾𝑠𝑐

3) Spin-spin correlation

Short-range spin correlation

𝐹 𝐿𝑥/2 ~𝑒−𝐿𝑥/2𝜉𝑠

5) Luther-Emery liquid
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4) Entanglement entropy and central charge
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