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RF-SciDAC Center is a collaboration of FES and ASCR participants Coupling RF codes with transport codes via RF-SciDAC High-order finite elements have excellent scalability RF-SciDAC Future Work RF-SciDAC Conc.urr.ent model!ng of plasma sheaths an_d RF_ . RF-SciDAC Mpdelmg §heath reFtlfICfithn and impurity sputtering RF-SciDAC Production of sputtered impurities during RF cycle RF-SciDAC LAPD device for sheath model validation RF-SciDAC
from DoE laboratories, universities, and private companies ponderomotive forces - formulation AVAY AVA S VAV physics is challenging due to length scale disparities AVAVARRG using a fluid approximation AVAVARRG varies nonlinearly with RF frequency and phase AVAVAR VAVAR

BLAST Strong Scaling on Vulcan . . . .
*Single-species fluid momentum equation — use current, not velocity, form: 10000 2D Lagrangian Sedov Problem on 131,072 zones * Thrust 3 focuses on the coupling of RF with the physics of didias 1. « Grid spacing dx generally chosen to enable ) Whg_?_ (‘;"_a” 1S RF_'b'ase‘_jt’h Sh‘Tath_ Stlr;fture I'Sh detiply « In low-frequency regimes, the ion 700 o ' ' . ' '
Massachusetts Institute of Technology, P. T. Bonoli, B. Biswas (GS), A. Ram, S. Shiraiwa, o %er nu -3, + 7B, = po [ + 7.x5] + collisions + sources “"SGH Code S Ssyrzme;t”y T equilibrium time-scale transport to the antenna/wall good resolution of desired RF physics moditied In comparison with a classical (nermal shea s e d.ynam|.cs is driven l?y VRF;.lons regch
A. E. White, J. C. Wright ¢ 1: aatf e mc}af ©oree oo~ T ~-Q2 FEM (Inline) L e el . . o - Sheath width A is much smaller (by « Fundamental behavior of RF sheaths and impurity higher impact energies during the first
Oak Ridge National Laboratory (FES), D. L. Green, R. Barnett (GS), J. Lore, C. Lau wa (ﬁ; + ) = [poE +JoxB] + collisions + sources " ~-Q4 FEM (Inline) * Progressive approach underway, leveraging reduced models & existing codes orders of magnitude) than RF wavelengths sputtering is captured by a 1D3V time-dependent model 9%/ =0 V = = Vigcos(@t)2 quarter of the RF cycle, but have low
Oak Ridge National Laboratory (ASCR), E. D'Azevedo, L. Mu ’ o SN — \ ~-Q8 FEM (Inline) e Surrogate models in lieu of full coupled-to-RF simulations . O - : oy implemented in Matlab S ; energy in the middle portion of the * LAPD (LArge Plasma Device at UCLA)

g y ’ ’ . g . . 100 N N & Direct resolution of sheath is pr0h|b|t|Ve 0%¢ e . prares JSEeseemsepastos, “®~=—~ cvcle —  Simple geometry with reproducible, accessible
Princeton Plasma Physics Laboratory, N. Bertelli, E.-H. Kim *Has both slow and fast timescale quantities; products of fast-timescale perturbations < \\\ N - QLG FEM (Inline) e 1D model to test coupling and ponderomotive effects o7 . : 9ot T e Limi T e, i g g plasmas; ideal for validating sheath predictions
Lawrence Livermore National Laboratory (FES), A. Dimits, I. Joseph, T. Rognlien, M. (modeled by RF codes) can beat down into slow-timescale dynamics (modeled by =) e e [ p-refinement | _ ' Solution: formulate sub-grid sheath boundary on. _enc0p _ : - In high-frequency regimes, ion energy — 18 m plasma column
Umansk : : . . S e N > e Implementation of surrogate models in 2D and slab models ot condition or T, oz v . i« g { th — 15 ms plasma pulse at 1 Hz . o an19 3
L Y Li National Laboratory (ASCR), T. Kolev, M. Stowell, V. Dob transport codes). Spectrally decompose into fast and slow dynamics with high/ : \\\ ~ 7 ; oni | Oniuai) _ ' 1SS MOore = URITOT == aue = 1o € - _Fr’lagnlﬂg ;Ivmllar to tokamak edge with n_~ 10~ m"~,

awrence Livermore National Laborator , 1. Kolev, M. Stowell, V. Dobrev, e . : oy . = - i i [ [ ' Riv: o =0, iti [ ' [ e .
Post-doctoral iate (TBD) ! low-pass filtering (retaining all nonlinearities); sum over species: T NN N 1 zone/core ® 3D ransport simulations to wall including RF physics vt - Treat sheath as local lumped circuit element i Zie 99 competition between lon inertia and ~ 1w magnetic field ~1000G
ost-doctora ass:oaa e . | AN N e e Long-term goal of scalable far-SOL transport code using MFEM / ° > ® . . (= + Ugi Vg = — = 28 itz sin b, RF oscillation potentials — 100 kW, 2.38 MHz, 1 ms pulse single strap antenna
Tech-X, D. N. Smithe, T. G. Jenkins Hective o f = Tt » Develop physics models for circuit elements % Oz m Oz e Modeling
electromagnetic " s i+ i 1<l y - Sheath . . . — P = (Wi Ui . i
CompX, R. W. Harvey, Yu. Petrov pressure <1[£ Mafao , _ G| .o <F iy ma]aoja0> o e Initial benchmarking shows promising results ; : (R, C) consistent with RF sheath behaviors (%t +um%v)uw = We;llzi COS Y, BC @ x=L % _, Thett .nonlllnclajr dependenche of - M%‘Sh entire 18|m column with antenna, limiters
a 0 a0 a . . . . 7 : ] . a9 — .
LD;ggfg, F?e'slza?riltmdjleRlolrvlyra \ T R 9aPao [, ® Advanced meshing techniques will allow extended meshing to wall D Sheah | Bulk Plasma » Circuit current flow (via Kirchhoff relation) gt g txi = eilai SR = ttyi COSY), oot Uinioay = 11 tshp:see;;nagtuy:; SRy B _ Apply postprocessing sheath model
2 J-1\. T 7 . i . . . . I'r =Y, - = = :
Rensselaer Polytechnic Institute (ASCR), M. Shephard, K. Karan (Post-doc) (*al - M) (jal _M> 0.01 e Near-term effort: exploring a mesh that transitions from field-aligned in core to coBA L pom 1 then becomes a new boundary condition ong O _ Err?t?aﬁie) Ui = b * Uinitial _ _ rs1eg'rZd%g??gsiavchsxgrr]:aegerscfﬁgn' slowwave |
University of lllinois - Urbana Champaign, D. Curreli, M. Elias (GS) +7- a p(p o = PFC-conforming in far-SOL A A4 KRC » Sheath does not need to be resolved; the ot aa T S UTEM s = by * Usnitia * At low frequencies only a portion of - - = Waves incident on plate angled at 457, mode e 2
. . gl R a 20 T Pa1 o . . . - _ ’ _ _ 2= the RF cycle produces sputterin : .
XCEL Engineering, L. A. Berry XB,)) + (collisions),p + (sources) o O S T T T T o  Validation exercises planned for LAPD and C-Mod geometries dp__A n-J,—ve new boundary condition captures its effects « Coupled with a BCA sputtering code Fractal-TRIDYN v d J 0 /2 " 82 2 - Fast wave propagates down device to strike
i Lp $ A EP PSS ST S 8% order Lagrangian shock dt &% - _ BC@X=0  ¢(z,) = —-22 cos(wt) - When the frequency is increased, the wt SELP
-Products of RF terms will be passed to transport codes as source terms Number of cores ¥ triple-point interaction * RF sheath boundary conditions applied (RF Wall) 2 impurity production levels off

-Effective pressure terms can alter density near antenna, modifying RF accessibility and propagation
-Later in project, two-way coupling: pass evolving background profiles to RF codes
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Scientific Objectives & Organization of the tAheriT:SStl‘?epaltrll](;(r?uzp[;lgﬁcljs?:c[(; rrsaenzu:)rgcgs?:ﬁurgi%ﬂ: for R -SciDAC Same MFEM-based AMR algorithms can be applied RF-SciDAC Thrust 4 focuses on using the developed meshing and Sheath and impurity sputtering modeling with Vorpal ~ RF-sciDAC Fluid modeling of sheath rectification agrees well with ~ RF-SciDAC Sputtered impurity transport fluxes are also affected =~ RF-SciDAC Petra-M solution + local sheath model predicts RF RF-SciDAC
RF-SciDAC Project P AV A to a variety of high-order physics models LAV solver tools with sheath and sputtering models to Yyuve previously published models Yyuve by RF frequency and phase LAV potentials on target plate YV
i Ulati T g o o *Previous SciDAC/Tech-X efforts formulated capacitive sub-grid sheath bounda
. "y SoMSOL based 3D simulation calculate RF-rectified sheaths and impurity generation AN - o0 oap J . v , N |
e Develop an integrated simulation for quantitative prediction of the antenna * RF sheath potentials cause additional heat e | Wssoo ‘ | “SNann I conditions using explicit local PIC modeling of the sheath [T. . Jenkins & D. N. Smithe, Q/w;=0.1,y=78.46°, ww_ =0.3, Vpp=20T ¢ N 1020 Impurity Flux at Different Frequencies ® Petra-M post-processing: preliminary sheath voltage result obtainea
: : I ey - 2 PSST 24, 015020 (2015)]. Currently implementing improved sheath boundary conditions S s © . P - : : . . . . — for RF fast wave incident on tilted plate in plasma column of LAPD
+ sheath + scrape-off-layer + core plasma system which fully utilizes fluxes to surfaces and can drive convective cells AT el < N 3 : : Differences in  sputtering yield 4 / wi = /2 '
P Y P Y y RS | Moo _, 3 qiisa 2 Thrust 4 that use a more generalized sheath impedance [J. R. Myra, PoP 24, 072507 (2017)]. lead to different behaviors of s —_—t=n experiment
leadership class computing. e Sheath boundary conditions are influenced by TR | i € £ S - . . . . . sputtered impurities exiting the s i) i e Experimental validation is being planned for late 2018/early 2019
' ' icti ili ' ' ' he ti d heath ial o &Y e 3 ‘ 3 i Vorpal PIC capabilities model particle flux to surfaces, with particle energies adjusted to heath i Deb heath i RF Cycle=50 150 e Will provide opportunities to test full wave predictions, sheath
e Validate this predictive capability on appropriately diagnosed experiments the time-averaged RF sheath potentia N a=rim] [ S ga=- S . reflect passage of test particles through the sheath potential drop. Can also model :nzamagaeeg[:znpre(_sieﬁh)s ea : | \ %()X redictions and sputtering models ,
including dedicated RF test stands, linear devices, and existing tokamaks. e Requires specification of the time-averaged RF Sl El e E (" SOL Fluid Turblent ssa erosion and surface heat loads. Sputtering models [Y. Yamamura & H. Tawara, At. Data 2= 4l |
. . s | oo b S Core RF Wave Response 3D — Edge RF Wave : fani « Perturbations more evident at .» 1,
® Project organized into 4 thrusts: sheath potential on flux tubes in the SOL . Bl - o o U R %%g o Nuel. Data Tables 62,149 (1996)] also implemented for plasma-facing surfaces. low-frequency regimes, leading £ » k\ i 50 ]
0.20l 1 : A o —
o Thrust 1: RF WDM Components & Thrust Common Efforts (other poster) — To be provided by project RF codes, once they have A B e (soL Fluid Equilibrium y@ﬁé N to lower average fluxes of ~ Y 10
_ _ [m] Teansoort3n P S5 Test-particle strikepoints £ ttered i iti 0 ' ' '
implemented the fast-time-scale RF sheath BC 3D heat fluxes from RF antenna c e e s g on plasmafacing  Me : sputtered impurities / | | |
o Thrust 2: RF + Turbulence (other poster) on NSTX (Perkins 2012) < S CoiERE i s e S RF Sheath g J Sputtered : 4 ]
— For development and testing, we use a biased flux 0621 356ms 3 S Response R ;‘*;5“ Model Col\r;lponents of S S ghZ neural - Average flux reaching the
o Thrust 3: RF + Equilibrium Transport (this poster) tube projected uniformly along B 29 c;; 4D '2ﬁ:’+r§ns‘:;‘*r'ta3'[‘)’" a’gvﬁ 4 Parameters C-Mod antenna ¥ < atoms (red) ypstrgam plasma per RF cycle P ]
o Th _ : : . . = S T \_~1kCPU Hours S from antenna is highly dependent on the 1
rust 4: RF + Impurity Generation (this poster) — Surrogate models are guided by probe and gas-puff Q S S ~ 1 M CPU Hours — ~1 M CPU Hours surface, arising frequency 0 '
L ) : . S o _ o o 40 5¢
e Use these tools to inform design of robust, impurity-mitigating RF heating lmaglng velocimetry measurements in C-Mod; and - . J from fon-wal Fig. 1 from [J. R. Myra and D. A. Fluid implementation in Matlab
and current drive sources for future fusion devices. IQF \ &\ iADA& probe measurements in LAPD D’lppolito, PoP 24, 062507 (2015)] (no impurity sputtering) plate
A "TER IGRF anfomna modus (previous RF-SciDAC work)
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- i hysics can be added d e itk ¢ lel ling to ~400k ks d g eda ek | heath formati faces: ol Nk loping i d sheath bound diti ol Nk - onif Sen g L ¢ — Send [ ¢ Future Work ol Nk
Thrust 3 focuses on the coupling of RF with the g[F)DIVSICS Canl e added to IEIVIC3-fEIR_ENE to stuay -SciDAC Parallel AMR scaling to ~400k MPI tasks demonstrated RF -s&. DAC P asnrlla S Ieat gllrmatlon on RF antenna surtaces: RE -s&. DAC ]E)evsFoplgg Improved sheath boundary conditions RF -s&- DAC lon impact angles are significantly affected by local RF -s&- DAC How RF affects the mean flux of sputtered impurities: ~ RF -s&- DAC RF -s&- DAC
- T T - . asma evolution near plasma-facing components JveTY VA2 a multiscale problem VA or RF codes VA i~ fi : : 1ati VA ) : tao : VA VA
hvsics of eauilibrium time-scale transpbort to the P P g P 100 | I il P YV YV magnetic field orientation and by RF oscillations il low- and intermediate-frequency behavior il YV
) ] (a) 200 T i ideal strong scaling ——— TTIIT . . .
antenna/wall e EMC3-EIRENE solves steady-state 3D fluid transport equations ; weak scaling ; B BN -Sheath formation on antenna surfaces is associated with sputtering of neutral * A nonlinear sub-grid sheath model is used to compute the plasma sheath response o o e Thrust 4 focuses on using the developed meshing and solver
Th 3 ing field-ali d h '. PECs size M - NN on the Debye scale Normalized impact angle distribution . Diff t behavi be found i ,
rust HSIng field-atighed mes sgem .+ | wall atoms, and subsequent high-Z impurity contamination of the fusion reaction o , : , rrerent betiaviors can be folind in 55 X107 Mean Sputtered Be Impurity Flux T : tools with sheath and sputtering models to calculate RF-rectified
- - 5 e Grid can extend radially to antenna structure and PFC structure. 100 | size M —— | as these neutrals are ionized. * The model output is represented as a sheath impedance z_(a nonlinear function of RF 03 - A ’8"“"““':0j — 0.3 bl il :‘L — different ranges of frequencies. | G h h di i .
* Meshing can be challenging due to structured grid requirements. ' g Sz o o | i amplitude) and a rectified sheath potential - 1 is the magnetic field angle G — i e * Atfrequencies w < w; the impurity flux — =00 — sheaths and impurity generation
7 . . » 5 ize 64M —o— =i . i i isti il dri . . . (7 S S ion inerti ‘ . . . : .
(" <oL Fluid Turblent fi‘] ~ Resultsin a large memory footprint. 3 é 10 - oo | RN AR Sheath W'dth_s are small re.Iatl\./e to Char_aCte”St'C. RF W?‘V?lengths’ but St'"_ drive e Use this sheath impedance as boundary condition in RF codes o Magnetic field angle and = ! ‘ -~ ! 3 3{:‘5?:::623 the effect of the ion inertia 2| * Physics of impurity generation has been added to previously developed
Core RE Wave Response 3D --:;ﬂ? Edlie REWaTe e 3D meshing of Alcator C-Mod antenna region in progress = % - [elevﬁnt pfllySICS. Problem is hIEhly multiscale: Wldtla variation between various * replaces usual E_= 0 conducting wall BC with E, =V, z) regime of operation affect the =, = _ | o y e sheath models
. ! . P : : : . ”» i t = ViUnZg : , MM A T I\ . requencies w > w . the density o
520|5V§f \ ~ 10kCPUHours @JA% ngll\ser e High geometric fidelity calculation will require advancements in 2 ’(Dfﬁgifnig?ﬂpsfém ength scales {Aoc, Ay oo At Laeviced» @Nd timescales {w, wpp, 2, v} e If sheath does not affect incoming waves significantly, interaction of RF waves and impact angle O_f incoming /L A ions qimpacting the wall incre;lses ~15} ® Enables nonlinear behavior of plasma-wall interactions, impurity energy-angle
| Tﬂuid — rgﬁ meshing and reduced memory footprint e 2 -Both the ion distribution function in the sheath and the sheath structure itself are sheath can be solved independently p;\rtlclesf, thdeFF;Ie:ndmlg O? the o o 0 0 o - significantly  with the  frequency, = distributions, impurity fluxes to be quantified
S i éﬁﬁ’*ﬁ é affected by magnetic fields and RF bias, « Iterate until - [y, B, w, p] is consistent with field solution on the surface phase of the RF cycle (wt) L(j:(l())j;:())"s ”*:DOILZL dominating any other  physical 5 e Verification of physics consistency between RF and plasma-material
Core RE Pl = RPN "f—‘:g" RF Sheath oL - » This affects sputtered impurity 03 = 0.3 A — behavior. This leads to an increase in & 1} interaction codes is ongoing
ore asma T b i ] L . . S 5 ;
NN Model (@) Torodal blocks N : - : 10_4()6 : - . energy-angle distributions as | — — 5 e mean sputtered flux.
R ) ) = atecorierrerm RN Plasma Sheath Physics Erosion Physics [107°-10° | Atomic/Molecular Processes | Impurity Transport (p1) _ . = —— gy g T i 2 " . "
essgnse Impurity Generation ;»&‘é‘ 4 Parameters e (o) NN, _ [10-102m, 109-10% §] m, 102109 s]. Multiple [1075-10%s]. Once a material | [10°-10"m, 10°-10s]. The Ef=-V ke i orestendi] well 02 —— =3 02 S . The densitv of ions fng th ' e Initially: hPIC, Vorpal, sheath boundary conditions
and Transport 3D -ghﬂ . _ TN The IEAD of the plasma channels for impurity impurity is released from the now-charged impurity is » £ // = = r € density or 1ons impacting e wa | e Eventuallv: ETRIDYN + Voroal E-TRIDYN + MEEM
\__~ 1kCPU Hours ‘a‘ e Il ; E Seoo e e T T Parallel partitioning via impqgting the wall is emission: spufttering, bubble | surface, it can be ionized by subject to all the L_Jsual . VRF s _Jr(fh)zsh - __Dr(1p1)zsl" g’ 7 e ExB drift evident at inclined “ - . w3 o ‘ cannot exceed the upstream density; at y: pal,
PN s — LM ER RN X il " 64 8 256 512 1K 2K 4K 8K 16K K 6K 126€ 256K 384K Hilbert curve Qoadﬂzgfgtgirifhsf;ﬁe ;ngg:;?fic?;azl:::n%ctngrmal Lheecglﬁ:r?:sgiﬁz?\:gligd e Eﬁﬁgfngcelfrgtzéﬂwd’ i N % magnetic fields | /{(\ S j — large frequencies (w ~ 200 w,) ion e Experimental validation of sheath models on the LAPD experiment is planned
\. J J b | CPU cores and RF bias. particles Ie,ave .the surface electromagnetic fields. re—depositéd back to the Coupled equations: % ! density starts to plateau and is no : 1 , 1 1 ) : ] . : : yv . .
30 40 50 60 70 80 . o~ in neutral charge state surface, or flow far from the 1)  RF wave field determines the displacement, //% % 50 100 On 50 100 longer the dominant behavior. U(] 1 9 3 4 5 6 7 8 9 ° ApproaChes for Impurity-sputtering mitigation will be explored
- N /\,,A . | Ak BIN Rem * weak+strong scaling up to ~400k MPI tasks on BG/Q except for Li (~2/3 charged, surface, cross the thus the RF sheath voltage. /// 0;( Degrees) 0;(Degrees) ailiid)
RF-Sc iDA C = Transport modeling in NSTX * measure AMR only components: interpolation matrix. assem b|y ma rking 1/3 neutral). separatrix, and contaminate 2) Gradient of RF sheath voltage determines ] (non_nelitml) Debye sheath i
\v \v/ \/’ A, CAD model of C-Mod fi t & bal . ( i | “shvsi ! ") ! ! the core plasma. the boundary condition for RF electric field. * Displacement current
f field-aligned ICRF antenna refinement & rebalancing (no linear solves, no “physics N
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Codes used and under development in Thrust 3 Far-SOL MFEM-based solver on non-field-aligned RF-SciDAC Several variable-fidelity validation targets have been RF-SciDAC Modeling RF physics with the Vorpal (VSim) code RF-SciDAC RF-SciDAC code and model benchmarking activities RF-SciDAC Energy-angle distribution of sputtered impurities is RF-SciDAC How RF affects the mean flux of sputtered impurities: ~ RF-SciDAC
mesh is being investigated AR identified from existing devices VUV AR i W=70°T=3eV, B=1T AR also influenced by local magnetic fields A high-frequency behavior AR
, e EMC3-EIRENE widely used to model 3D - LAPD Linear Device C-Mod Tokamak VVorpal (VSim) — electromagnetic/electrostatic PIC code, finite-difference B X 2 ~ e 3 me
* Transport codes (production) B time-domain (FDTD) methods, kinetic (Boris) particles, expanding GPU : s, o B =o0x10mE, oy - Loa0 . Sputtering vyield acquired from  Energy-angle distribution of sputtered impurities (wt = ) - - N Mean Sputtered Be Impurity Fl
. equi“brium transport code in tokamaks/ - > d P , €XP 9 \ Vy v|| CdN N\ 1 i 2 * At high frequencies, the ion inertia i XA it o it b el s e
— UEDGE: 2D fluid plasma and neutral transport stellarators, but meshing can be challenging Parallel model  Perpendicular model oS oc ’ capabilities, good parallel scaling up to 100k+ cores (OLCF, NERSC) Y ks o PPC =500, Ax=-2  At= _cr F-TRIDYN Y = T8.46%, & = 0.3 Y= T8.46°,3 =3 limits the gain in ion impact — = 5313
— EMC3-EIRENE: 3D Monte Carlo fluid plasma, kinetic neutrals . e 10° ———— o T . . (B39 N\ v s 2 20-Q, . Maxwellian distribution of inputs energy from the potential drop, “F —1 =00
— We need both high geometric fidelity to match RF «Can model wave propagation in edge/SOL region, where temperatures are low L . . . . _ . _ decreasing the flux of incoming )
. . . : - : ost particles replenished with volumetric source; 1D3V model are given to F-TRIDYN; outputs _ 8
° S|mp|e / surrogate RF models antenna structures, and high-order basis functions 10 Material Wall _ ions.
to capture the large anisotropy (~103 - 10°) in heat «Can import realistic machine geometries and plasma profile are hcorr}blrr:ecli ba;_ed_b on the This behavior stars to dominat 7
B . ” . 2 . & 4 ¢ ; ; _ - _ _ :  This behavior starts to dominate
New 1D coupled code (ORNL) transport in the SOL e : g £ ¢ 3 Multiple benchmark cases specified, to verify consistency between RF (Vorpal) weights of the input distributions g, SN e as the ion density plateaus, = 6}
— Analytic models (Lodestar, Tech-X) e Using MFEM and advanced meshing tools may > BE B and PMI (hPIC) codes: * Magnetic field angle affects the 0 20 80 %0 120,150 10 %y a9 w0 90 120 180 180 leading to the decrease in mean -
e RF SOIVerS provide us both. gox- -case 0: unmagnetized, grounded walls -case 1: magnetized, grounded walls energy-angle distribution of I@"ED;?;?SZ] . ?(—Dg?.rief):& sputtered flux at frequencies w > §, 5
S -case 2: magnetized, grounded left wall, right wall at V = 10T /q volts sputtered impurities by changing ' ' 200 W .. S 4
— PETRA-M (RF solver based on MFEM) e High order: Implemented NIMROD benchmarks . : : i 8 TRod T intoror concrarmn of aloatey | THD - Swep P amenns -cases 3a, 3b, 3c: magnetized, grounded left wall, right wall at V = V sin(wt), with RF frequency o << w_, o ~ 0, @ >> o, impact angle distributions P
An . bl b analvtic solut e 2D simulation Current : L] Civiod tokamak e _ - o 2 " + At frequencies w > 350 w; the ion 3t v
e MFEM —  Anisotropic transport problem V‘.”t analytic solution " ﬁ planes straps W W w0 ws «Compare n, I', drift velocities, heat flux, ¢, electric field in each case « Sputtered impurity energy @ 3 incoming energy plateaus as the ,
to assess error (numerical diffusion) | . 1 ey . w 10 w . . 2
| L 3 - . _ ) Vorpal HPC performance “Th ft il add ified | ity fl ; Il (fixed distribution is not affected by ions reach energies comparable
e Tested Cartesian (non-aligned) grid using MFEM o {i e Simple, near-term validation | R ereafter, will add specified impurity fluxes from wall (fixed source, or magnetic field angle , to those seen in thermal sheaths. ! %
— Demonstrates acceptable error at challenging N geometries for LAPD (above). seli-consistent with PMI moaels). e % (5)0(0 = ‘;‘“0 Ll o (i°(09° ‘§° e 0 : L L L ‘
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e Flux-based numerical approach results in order _ . flid-aligned ICRP Vorpal modeling of Petra-M, BOUT++) and models (generalized sheath BC) where possible
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