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Goal: Understand plasma turbulence from
first-principle (Gyro)kinetics

• For weakly collisional (or collisionless) plasmas, kinetic
effects are required to capture the physics of
micro-turbulence.

• By treating both the Vlasov and gyrokinetic equations as
PDEs in phase-space we can use the same infrastructure
to solve both equations

• We use a version of discontinuous Galerkin scheme that
conserves particle and energy exactly.

• We have implemented solvers for kinetic and gyrokinetic
equations in the computational plasma physics
framework, Gkeyll.

• Gkeyll also contains solvers for multi-fluid equations,
allowing fluid-kinetic hybrid simulations, with some
species of the plasma treated with fluids while others are
treated fully kinetically.

(Gryo)kinetic equation as PDE in phase-space

Instead of using particles, we solve the (gryo)kinetic equation
as a partial differential equation in phase-space:

∂f
∂t +∇z · (αf ) = C [f ]

Here α is the phase-space velocity vector and C [f ] are collision
terms.
• For the full Vlasov system the phase-space velocity is
given by

α = (v, q/m(E + v× B)
• For gyrokinetics, the phase-space velocity is determined
from the Hamiltonian and the Poisson-bracket:

α = {z,H}
where H(z) is the Hamiltonian and {f , g} is the
(potentially noncanonical) Poisson bracket operator.

Fields that go into α or the Hamiltonian are determined by field
solves in configuration space. These can be either hyperbolic
(Maxwell equations) or parabolic (gyrokinetic Poisson/Ampere
equations).

Can we conserve important invariants?

• We know that the (gyro)kinetic system conserves total
number of particles; total (field + particle) momentum;
total (field + particle) energy; enstrophy and other
invariants.

• Conserving particles and energy is particularly important
to develop trust in simulations run over long plasma
time-scales

• Maintaining positivity of the distribution, f (z, t) > 0, is
also important to obtain physically realizable solutions.

• Can a numerical scheme be designed that retains (some
or all) of these properties, while continuing to maintain
conservation properties?

We use novel versions of the discontinuous Galerkin method to
construct efficient, high-order schemes that maintain positivity
and conserve particles and total energy.

Discontinuous Galerkin algorithm

• DG algorithms hot topic in CFD and applied
mathematics. First introduced by Reed and Hill in 1973
for neutron transport in 2D.

• General formulation in paper by Cockburn and Shu, JCP
1998. More than 1000 citations.

• DG combines key advantages of finite-elements (low
phase error, high accuracy, flexible geometries) with
finite-volume schemes (limiters to produce
positivity/monotonicity, locality)

DG combined with FV schemes may lead to excellent algo-
rithms for kinetic PDEs.

DG achieves locality with discontinuous solutions

Discontinuous Galerkin schemes use function spaces that allow
discontinuities across cell boundaries.

Figure 1: The best L2 fit of x 4 + sin(5x) with piecewise linear (left) and
quadratic (right) basis functions.

Example: constant and linear basis with upwinding

Figure 2: Advection equation solution (black) compared to exact solution
(red) with upwind fluxes and constant (left) piecewise linear (right) basis
functions.

In general, with upwind fluxes and linear basis functions nu-
merical diffusion goes like |λ|∆x 3∂4f /∂x 4.

Particles and energy are conserved

From the semi-discrete scheme we can prove the following
propositions.
• The discrete scheme conserves total number of particles.
• The semi-discrete scheme conserves total (particles plus
field) energy exactly, independent of upwinding of Vlasov
equation.

• The L2 norm of the distribution function decays
monotonically.

• The total entropy of the system increases monotonically.
See Juno et al. [2017] for detailed proofs of these and other
properties.

We have performed first 3X/2V gyrokinetic
simulations of turbulence in open-field line devices

Using our gyrokinetic code, we have performed the first GK
simulations of LAPD. See Shi et al. [2017], NSTX (See Eric
Shi’s thesis arXiv:1708.07283).

Figure 3: Snapshots of the electron density (in 1018 m−3), electron
temperature (in eV), and electrostatic potential (in V) in the plane
perpendicular to the magnetic field at z = 0m. Parameters are for a
“NSTX” like case, with bad-curvature driving drift-wave turbulence.

We have performed first fully kinetic turbulence
simulations in 2X/3V in periodic domains

Figure 4: The out of plane current Jz with magnetic field contours
superimposed at 20 and 40 Ω−1cp for Orsag-Tang turbulence simulation
using fully kinetic 5D Vlasov-Maxwell equations.

How to maintain positivity without changing
energy?

• The distribution function of particles is a non-negative
scalar function. That is f (x, v, t) ≥ 0. However, there is
no guarantee that a numerical scheme will preserve this
property.

• Standard positivity Zhang and Shu, can’t be used for
evolution of kinetic equations, as it involved modifying
moments of the solution, leading to errors in energy
conservations.

• Algorithms that change the moments of the distribution
function (while maintaining cell averages) will change the
particle energy. (The energy conservation in kinetic
system is indirect, unlike fluid systems in which one
evolves an explicit energy equation). Hence, use of such
"sub-cell diffusion" based positivity schemes should be
minimized or avoided altogether, if possible.

Designing a positivity preserving scheme that in addition main-
tains total energy conservation is non-trivial.

Perform exponential reconstruction in each cell

• The DG scheme, in a sense, does not tell us the solution,
but only the moments of the solution in each cell.

• However, we can construct infinite number of functions
can be constructed from given set of moments.

• For problems in plasma physics we know that locally, the
solution should be well approximated by a exponential
function, which, by definition, is positive.

Given a set of moments, is it always possible to reconstruct an
exponential? Or, are there some bounds on the moments that
permit the construction of an exponential?
Consider a distribution function f (x) = f0+f1x , for x ∈ [−1, 1].
Now, consider finding a new function g(x) = exp(g0+g1x) such
that the moments match. We will write this as

f (x) .= g(x)
(Note this is not strict equality, only equality in the L2 sense,
that the projection of both sides on a set of basis functions are
the same). Taking moments we get

2f0 = 1
g1

(gR − gL)
2
3f1 = 1

g2
1

[(g1 − 1)gR + (g1 + 1)gL]

where gR = eg0+g1 and gL = eg0−g1.
To gain some insight use the first equation to express g1 and
substitute this in the second equation to solve for gR, for ex-
ample, to get

gR = 6f 2
0 − (3f0 + f1)gL

3f0 − f1
.

This shows that as f1→ 3f0, gR →∞. Similarly, we can show
that as f1 → −3f0, gL → ∞, hence showing that we must
have the bound

|f1| ≤ 3f0.
Defining r ≡ f1/f0 we see that for a exponential reconstruction
to exist, we must have |r | ≤ 3. Hence, in 1D for piecewise
linear basis functions, we say that the scheme is positivity pre-
serving if f0 > 0 and |f1|/f0 ≤ 3.

Use exponential reconstructions for numerical fluxes

Figure 5: Exact nonlinear fits of gR/f0 (solid red), gL/f0 (solid blue) as a
function of r = f1/f0. Also shown are the cell edge values computed from
f0(1± r) (dashed red/blue). The exponential fit, even though has the
same moments as the linear function, always gives larger edge values than
those computed from the linear function.

Extension of exponential reconstruction to multiple dimension
is a hard problem, and hence we use a dimension-by-dimension
reconstruction along specially selected 1D slices.

With exponential reconstruction positivity is
maintained!

Consider a 2D advection of a square top-hat distribution func-
tion. With standard DG method there are very severe positivity
errors. Exponential reconstruction completely eliminates this!

Figure 6: Comparison of distribution function for square-top-hat initial
conditions with standard DG (left) and exponential DG (right). Regions
where the distribution function goes negative are masked out and appear
as white patches. Note the huge regions in which the standard DG shows
positivity violation.

Figure 7: Lineout of standard DG (orange line) and anti-limiter based DG
(blue line), for square-top-hat initial condition

Collaboration Opportunities

• Extension of exponential reconstruction to higher-order
remains a challenge: With piece-wise quadratic (or
higher) basis it is not clear how to construct a
exponential reconstruction: however, this will allow
“exact” representation of “local Maxwellian” in each cell.

• Develop efficient, conservative discretization of non-linear
Fokker-Planck collision operator.

• Implicit schemes for collisions will be eventually required.
Developing these in 5D remains an outstanding challenge.

• Developing scalable IO at large processor counts; in-situ
visualization from running simulations

• Porting key kernels to GPUs and implementing hybrid
MPI/GPU messaging system for gyrokinetic equations

• Developing special grid systems for divertor geometries
with X-points is highly challenging due to anisotropic
nature of plasma flows.
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