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• Simulations and Sky Surveys 
– Sky surveys can measure certain cosmological statistics (including cross-

correlations) at the 1% level or better; scientific inference from these 
measurements is strongly limited by shortcomings in theory and modeling  

– Exascale simulations, constructed from improved theory and modeling 
approaches (including subgrid modeling), implemented with new algorithms, 
and melded with advanced V&V and UQ protocols have the potential to fill 
current simulation gaps for a number of cosmological probes
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Baryonic density (left and top right panels) and temperature (bottom 
right) at z=0. The left panel is 600 X 400 Mpc/h, while the right panels 
zoom into a 50 X 50 Mpc/h region, the slice depth is 10 Mpc/h.

BorgCube: First large-scale CRK-HACC simulation containing 2 X 2304^3 dark matter plus 
baryonic particles in a cubic volume of side length 800 Mpc/h.

Cosmological Scientific Inverse Problem: Data and information flow in a precision cosmology 
application using emulators built using modern statistical and machine learning methods; these 
techniques can also be used to efficiently generate synthetic galaxy catalogs.

100:1 Compression Ratio 20:1 Compression Ratio 10:1 Compression Ratio

COOLEY (CPU/GPU) THETA (KNL)
CORI (KNL)

Cosmic Microwave Background Emulation: Angular power spectrum for multiple cosmologies with 5 
free parameters, exact and emulated spectra superimposed; dimensional reduction was perfromed 
using a variational autoencoder. The 1% error behavior is evident in the lower panel. The insets show a 
comparison of a 2-D PCA dimensional reduction (left) versus an autoencoder (right).

• Emulation using Variational Autoencoders 
– Dimensional Reduction is used in constructing emulators to make Gaussian 

process-based interpolation numerically tractable; traditionally this has been 
done using Principal Component Analysis (PCA). In initial work, we have shown 
that accurate emulators can be constructed using autoencoders; the resulting 
emulators are ~2000 times faster than the original code, allowing for very 
efficient parameter estimation using Markov chain Monte Carlo

Cosmological Parameters: 
Emulator-based MCMC results 
for cosmological parameters 
from WMAP and Planck satellite 
observations of the CMB thermal 
anisotropy power spectrum. 
Emulators have been 
constructed for the polarization 
and cross-power spectra and wil 
be used for analysis of South 
Pole Telescope (SPT) datasets.

Strong Lensing Image Classification: Left — lensed examples, top two rows (noiseless), 
bottom two rows with sky noise; right — coreesponding unlensed images. Convolutional neural 
networks were trained on a large number of simulated images for fast classification tasks.

Strong Lensing Image Classification: Strongly-
lensed background galaxies have distorted shapes 
(arc-like to rings) but these are hard to discern in the 
presence of noise and can be confused with non-
lensed background objects — with billions of 
candidates in future surveys, the task is beyond 
human capability. A CNN-based classifier was 
developed using noisy simulated images, achieving 
80-90% accuracy with a classifcation time of only 10 
microseconds per image using state-of-the-art GPUs. 
The difficulty of the task can be gauged by comparing 
correct and incorrect classifications.

Correct and Incorrect Image Classification: Left — correct classifications, right incorrect.


