Tokamak Disruption Simulation (TDS) Center: Toward

Robust Simulation using Scalable Formulations, Solvers, and UQ

Abstract / Motivation

Disruption modeling for characterization, prediction, and
mitigation is essential for realizing tokamak fusion. In TDS,
advanced plasma models (multifluid, kinetic, & hybrid) are being
explored for modeling electron dynamics, fast reconnection,
transport in 3D fields, and strong neutral jet - plasma
interactions. To enable these advanced TDS studies, our
partnership is applying and extending advanced ASCR-
developed scalable algorithms and software for:

 Implicit/IMEX extended MHD and multifluid electromagnetic
(EM) plasma formulations as continuum models and moment
based accelerators for hybrid continuum/kinetic models.

« lterative nonlinear/linear solvers, and physics-based block
preconditioners, to enable optimal multigrid solvers for
physics-compatible spatial discretizations.

» Uncertainty quantification (UQ) for high-dimensional spaces
using reduced sampling, surrogate modeling, and multifidelity
approaches.

Highlight: Implicit / IMEX Plasma Fluid

Formulations and Scalable Solvers

Extended MHD and multifluid plasma models are being
evaluated/extended for simulation of moderately dense to
dense collisional systems. Significant progress has been made
towards capabilities for tokamak magnetic-field evolution.

» Extended MHD [1,2] (Generalized Ohm’s law formulation).
Progress is being made towards MCF relevant simulation
capabilities. E.g. PIXIE3D has been used for studying
magnetic field evolution during a sawtooth oscillation for a
doubly-diverted D shaped tokamak [3].
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 MHD & Multifluid electromagnetic plasma models are
progressing towards capabilities for discontinuous solutions
relevant for massive gas injection for disruption mitigation.
Drekar has demonstrated initial scalable implicit / IMEX
solutions for accurate evolution of full multifluid plasmas, and
accurate solution of multifluid in asymptotic MHD limits [7].
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» Scalable MHD [1,4,5], extended MHD [2], and multifluid
plasma [6,7] block preconditioners, have been developed.
For the multifluid model these allow overstepping of EM
waves, plasma & cyclotron frequency, and collisional time-
scales, by > 10*for appropriate plasma problems [6,7].

We are porting these scalable solvers to BOUT++ and GTS.

Scaling of ion/electron multiflud plasma block

Weak Scaling: Avg, Linear lters. / Newton Step preconditioner for 2D EM pulse driven system

3D MHD Generator. Re = 500, Re,, = 1, Ha = 2.5; (Steady State)
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Weak scaling solvers: steady MHD (left), transient multifluid (right)

Highlight: Towards Fluid-kinetic

Coupling with Runaway Electrons

» Goal: to couple our fluid solvers with a novel relativistic
Runaway Electron Fokker-Planck solver, featuring:

1. Exact conservation properties and preservation of positivity.

2. Optimal MG-based nonlinear solvers.
3. Adaptive meshing (under implementation).

Preservation of boosted Maxwellian Runaway Electron Vortex formation

Relative errors

Highlight: Uncertainty Quantification

» Development of robust and efficient UQ and sensitivity

analysis using efficient sampling, surrogate / reduced order

modeling, and multifidelity approaches for sensitivities, forward

UQ, and inverse UQ for data-informed model improvement.

E.g. Initial Studies using OX-Merger Model

@ In a disruption, plasma temperature will drop from Above threshold

10 keV to a few eV in a few ms.

@ This energy can be mostly channeled through
runaway electrons.

@ Complete avoidance is impractical

@ Optimal scenario is to avoid runaway avalanche

@ Semi-analytic theory of the runaway threshold

recently developed (McDevitt et al. 2018) Below threshold

>

@ Provides versatile tool for determining conditions
under which a large runaway population can be
avoided

@ Depends on the strength of the magnetic field, the
electron temperature and the charge state
distribution of the impurity populations.

Sensitivity Analysis

Performed global sensitivity analysis based on Sobol indices [8]:
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Stochastic Inversion

We combine measure-theoretic and Bayesian concepts to
construct a consistent posterior [9] :
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Application to 0D OX-merger model: demonstrates that new
method using inverse UQ better reproduces observed data.
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Nonlinear ROM using empirical interpolation method

CPU time to solve incompressible Navier-Stokes equations [10]

#parameters |4 | 16| 36 | 49

Solve full system 55.1s 53.6s 66.8s 57.1s
Solve reduced system 0.11s 1.76s 11.0s 24.8s
Major Next Steps

* Develop R&D version of PIXIE3D/Drekar with OMFIT
capabilities, EFIT experimental equilibrium, study
instabilities, breakdown of magnetic structure.

* Pursue initial INCITE-scale fast-reconnection and massive
gas injection (MGI) type prototype problems

« Demonstrate high-order IMEX hybridized discontinuous
Galerkin [11,12] on MCF relevant resistive MHD problems

* Perform comprehensive UQ studies (forward, inverse) on
0D OX merger RE, begin studies on 1D, 2D neutral MGl
models with transport effects for neutrals/ions/electrons.

» Explore efficient reduced sampling and multifidelity UQ
approaches with Qol surrogates, and ROM for dynamics of
parameterized MHD / plasma codes
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