Tokamak Disruption Simulation (TDS) Center: Toward Robust Simulation using Scalable Formulations, Solvers, and UQ

Abstract / Motivation

Disruption modeling for characterization, prediction, and mitigation is essential for realizing tokamak fusion. In TDS, advanced plasma models (multifluid, kinetic, & hybrid) are being explored for modeling electron dynamics, fast reconnection, transport in 3D fields, and strong neutral jet - plasma interactions. To enable these advanced TDS studies, our partnership is applying and extending advanced ASCRdeveloped scalable algorithms and software for:

- Implicit/IMEX extended MHD and multifluid electromagnetic (EM) plasma formulations as continuum models and moment based accelerators for hybrid continuum/kinetic models.
- Iterative nonlinear/linear solvers, and physics-based block preconditioners, to enable optimal multigrid solvers for physics-compatible spatial discretizations.
- Uncertainty quantification (UQ) for high-dimensional spaces using reduced sampling, surrogate modeling, and multifidelity approaches.

Highlight: Implicit / IMEX Plasma Fluid Formulations and Scalable Solvers

Extended MHD and multifluid plasma models are being evaluated/extended for simulation of moderately dense to dense collisional systems. Significant progress has been made Plowards capabilities for tokamak magnetic-field evolution.

ted by the X-point, and this could be proplemented

neutral ion/electron Extended MHD [1,2] (Generalized Ohm's law formulation). plasma core into a low density environment. Progress is being made towards MCF relevant simulation (Preliminary) capabilities E/g. PIXIE3D has been used for studying magnetic field evolution during a sawtooth oscillation for a Scalable MHD [0,4,5], extended MHD [2], and multifluid doubly diverted D shaped tokamak [3] plasma [6,7] block preconditioners, have been developed. For the multified model these allow overstepping of EM $\mathbf{V} \times \mathbf{B} \stackrel{m=3}{m} \mathcal{V}_p_e - \nabla \cdot \overline{\Pi}_e$ $-\mathbf{\underline{u}}\times\mathbf{\underline{B}}+$ η $\frac{\ddot{n}}{n} dt$ waves, plasma & cyclotron frequency, and collisional time-1.0 scales, by > 10^4 for cappropriate plasma problems [6,7]. 5×10^{3} 1.0 0.5 0.0 fel • We are porting these scalable solvers to BOUT++ and GTS. (0) **Figu** Ծ 0.Տ MPs, characterized by prosi-periodic sawtooth oscillations in (a) temporal evolution of $\frac{3D \text{ MHD Generator. Re = 500, Re_m = :} \hat{b}^{\rho} = q \frac{\mathbf{B} \cdot \nabla \rho}{\mathbf{B}_0 \cdot \nabla \phi}.$ 40 the sarery Tation 1^{1} harmonic is plotted at $\Psi/\Psi_{sep} = 0.05$, where the core peak associated with the internal kink free we will be used as the core peak associated with the internal kink free we want to an $m > 1^{1}$ harmonic is plotted at $\Psi/\Psi_{sep} = 0.05$, where the core peak associated with the internal kink free we want to an $m > 1^{1}$ harmonic is plotted at $\Psi/\Psi_{sep} = 0.05$. harmonies are plotted at the corresponding low-order resonances $q(\Psi) = m$. The magnetic configuration scatter of two of simulation times marked in spanels (a) and (b) are reported in the remaining panels. (b) (d) radial profiles of the imaginary part of main n = 1 harmonics of 2^5 \hat{b}^{ρ} . $q(\Psi)_{0-8}m$ resonances are marked with vertical colour lines. (e) -(f) Poincaré plots at $\phi = \pi^{5}$ (colour dots) and axisymmetric magnetic ²⁰ separatrix $\Psi = \Psi_{sep}$ (black curves). Effect of magnetic perturbations empl(MPS) approximate boundary wated tokamate makes pos-1. B₀. Else, $\rho = \frac{\Psi}{2\pi}$ is the radial-like coordinate and θ_{f} is the sible stand of the contraction of the spherical angle-like coordinate that manages the BB BRE field At 2, 5 E+04 these the point of the point $\hat{b}^{\rho}(\rho, \theta_{\rm f}, \phi) = 0$ is the point of the poi

the two periodic coordinates $\theta_{\rm f}$

• MHD & Multifluid electromagnetic plasma models are progressing towards capabilities for discontinuous solutions relevant for massive gas injection for disruption mitigation. Drekar has demonstrated initial scalable implicit / IMEX solutions for accurate evolution of full multifluid plasmas, and accurate solution of multifluid in asymptotic MHD limits [7].

$$\frac{\partial \rho_a}{\partial t} + \nabla \cdot (\rho_a \mathbf{u}_a) = \mathcal{R}_{\rho_a}$$
$$\frac{\partial (\rho_a \mathbf{u}_a)}{\partial t} + \nabla \cdot (\rho_a \mathbf{u}_a \otimes \mathbf{u}_a + p_a I + \Pi_a) - q_a n_a (\mathbf{E})$$
$$\frac{\partial \mathscr{E}_a}{\partial t} + \nabla \cdot ((\mathscr{E}_a + p_a)\mathbf{u}_a + \Pi_a \cdot \mathbf{u}_a + \mathbf{h}_a) - q_a n_a)$$
$$\epsilon_0 \frac{\partial \mathbf{E}}{\partial t} - \nabla \times \frac{1}{\mu_0} \mathbf{B} + \mathbf{J} = \mathbf{0}; \quad \frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = \mathbf{0}$$

E.g. Ideal MHD (1D Ryu-Jones, 2D Orszag-Tang: Density)

E.g. Multifluid EM plasma.

Expansion of initially

0.5

0

Highlight: Towards Fluid-kinetic Coupling with Runaway Electrons

- Goal: to couple our fluid solvers with a novel relativistic Runaway Electron Fokker-Planck solver, featuring:
- 1. Exact conservation properties and preservation of positivity.
- 2. Optimal MG-based nonlinear solvers.
- 3. Adaptive meshing (under implementation).

Preservation of boosted Maxwellian Runaway Electron Vortex formation

Highlight: Uncertainty Quantification

• Development of robust and efficient UQ and sensitivity analysis using efficient sampling, surrogate / reduced order modeling, and multifidelity approaches for sensitivities, forward UQ, and inverse UQ for data-informed model improvement.

E.g. Initial Studies using OX-Merger Model

- In a disruption, plasma temperature will drop from 10 keV to a few eV in a few ms.
- This energy can be mostly channeled through runaway electrons.
- Complete avoidance is impractical
- Optimal scenario is to avoid runaway avalanche
- Semi-analytic theory of the runaway threshold recently developed (McDevitt et al. 2018)
- Provides versatile tool for determining conditions under which a large runaway population can be avoided
- Depends on the strength of the magnetic field, the electron temperature and the charge state distribution of the impurity populations.

int and

SIP 3AI

int alle

20

Above threshold

Sensitivity Analysis Performed global sensitivity analysis based on Sobol indices [8]: Qol: Gamma Qol: Ecrit

all all int las all las int the

Stochastic Inversion

We combine measure-theoretic and Bayesian concepts to construct a consistent posterior [9] :

$$\pi^{\rm post}_{\Lambda}(\lambda) = \pi$$

Application to 0D OX-merger model: demonstrates that new method using inverse UQ better reproduces observed data.

Nonlinear ROM using empirical interpolation method

CPU time to solve incompressible Navier-Stokes equations [10]

# parameters					
Solve ful	l system				

Solve reduced system

Major Next Steps

Incomplete List of References

- Chacon, Phys. Plasmas, 15, 056103 (2008)

2018 DOE SciDAC Principal Investigators' (PI) Meeting, Rockville, MD; July 23-24, 2018

Chacon (LANL-PI), Shadid (SNL/ASCR-PI), Smith (ANL-PI), Bui-Thanh (UT-PI), Elman (U. MD-PI), X. Tang (TDS-PI, LANL)

 $\pi^{\text{prior}}_{\mathbf{\Lambda}}(\lambda) \frac{\pi^{\text{obs}}_{\mathcal{D}}(Q(\lambda))}{\pi^{Q(\text{prior})}(Q(\lambda))}, \quad \lambda \in \Lambda$

4	16	36	49
55.1s	53.6s	66.8s	57.1s
0.11s	1.76s	11.0s	24.8s

Develop R&D version of PIXIE3D/Drekar with OMFIT

capabilities, EFIT experimental equilibrium, study

instabilities, breakdown of magnetic structure.

 Pursue initial INCITE-scale fast-reconnection and massive gas injection (MGI) type prototype problems

• Demonstrate high-order IMEX hybridized discontinuous Galerkin [11,12] on MCF relevant resistive MHD problems · Perform comprehensive UQ studies (forward, inverse) on 0D OX merger RE, begin studies on 1D, 2D neutral MGI models with transport effects for neutrals/ions/electrons Explore efficient reduced sampling and multifidelity UQ approaches with QoI surrogates, and ROM for dynamics of parameterized MHD / plasma codes

2. Chacon, J. Physics: Conf. Series, 125, 012041 (2008) 3. Bonfiglio et al., Plasma Physics and Controlled Fusion, 59, 014032 (2017) 4. Shadid, et. al., Comp. Meth. Applied Mech. Eng., 304, 2016 5. Lin, Shadid, et. al., J. Computational and Applied Math, 2017 6. Phillips, Shadid, et. al., submitted to Lecture Notes Computational Sci. Eng. 7. Miller, Cyr, Shadid, et. al., to be submitted to J. Comput. Physics 8. Adams et al, "Dakota, ...", Tech. Rep. SAND2014-4633 (Ver. 6.6), SNL, 2017. 9. Butler, Jakeman, Wildey, SIAM SISC 40 (2), 2018. 10. Elman & Forstall, Comp. Meth. Applied Mech. Eng. 317, 2017. 11. Lee, Shannon, Shadid, and Bui-Thanh, SIAM SINUM. under revision. 12. Wildey, Muralikrishnan, Bui-Thanh, SIAM SISC, under revision