

XGC I/O Performance

We maintain cutting edge I/O performance for XGC on various file systems, including SSDs and NVMe, on Theta, Cori, and Summit. We also tested on Tusbame3.

XGC Software Process

Agile XGC development

- Incorporate a modern CMake build system
- Continuous Integration testing system
- Git workflow incorporated with CI system
- Integrate CDash into github

Data Management Challenges in HBPS

Jong Youl Choi¹, Michael Churchill², Robert Hager², Seung-Hoe Ku², E. D'Azevedo¹, Bill Hoffman³, David Pugmire¹, Scott Klasky¹, C. S. Chang³ ¹ORNL. ²PPPL. ³Kitware

Coupling Workflows

- visualization services while XGC and coupled application are running

Acknowledgments: Work supported by U.S. DOE Office of Science, ASCR and FES. This research used resources of OLCF, ALCF, and NERSC, which are DOE Office of Science User Facilities.

Summit	Theta	Cori
ORNL	ANL	NERSC
Node local	Node local	Remote Shared
ocal filesystem	XFS filesystem	Cray WARP
800 GB	128 GB	288 Server
per node	per node	50 TB limit
		per job
GPFS	Lustre	Lustre
Lustre		
• · · · · · · · · · · · · · ·		