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1. INTRODUCTION 3a. PROFILER: SCORE-P ; VISUALIZER: VAMPIR; MACHINE: TITAN (OLCE)
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- e Full trace (using synthetic dataset) - 20 nodes / 20 ranks / 8 iterations
e Final iteration computes 4-point vertex function

e Pre-exascale and exascale systems :
— massive amounts of hierarchical memories
— user-managed caches /| DRAM / NVMs

e — e 31% (teal) — computing DGEMM (work performed on GPUs)
e Scientific applications — adapt to new hardware without i =—s=—s=—— — | il e 4-point function needs massive memory for storage and computation
compromising scalability / efficiency e ———— | o will be addressed using DRAM / NVMs on Summit

e Application : DCA ++ (Dynamical Cluster Approximation)
— Collaboration between ORNL and ETH Zurich
— Recipient of the Gordon Bell Award in 2008

e Focussing on iteration 4 (all iterations have similar worktlow)

e 10% (red) of each iteration — MPI reductions
e Massive load imbalance across the nodes (MPI ranks)

e DCA++ today: o Task-based programming models might help with imbalance
o 16 petaflops of performance on Titan (OLCF) o Hardware reductions on Summit

2. DYNAMICAL CLUSTER APPROXIMATION 3b. PROFILER: HPCTOOLKIT ; VISUALIZER: HPCTRACEVIEWER; MACHINE: TITAN (OLCE)

- - - e——————. ¢ Full trace (using synthetic dataset) - 10 nodes / 10 ranks / 4 iterations
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(Calculating Green’s Function)

co-related quantum materials | o < et Convergonce reens T X-axis — Execution time (iterations)

Function . Function
Algorithm

(superconductivity, © g —————— e Thread level information (.wa.lkers and acqumulators)
magnetism) 2 Quantum oo o sl __:“ e Each MPI rank performs similar computation

- e OpenMP — Coarse Graining Function / Standard threads -- QMC Solver
e [terative self consistent TR o R

algorithm S D n e SN | e Trace for 1 MPI rank (shows all 4 iteration steps)

e Uses 4 programming models: ... | @ g * Lach color —procedure call; Each line -~ Threads ( OpenMP/C++ std. )
o MPI N\ =TT L | e White space — C++ std threads fork / join (threads not being reused)
o C++ Standard Threads v\ /. e 30% of total execution — Mutex locks

o NVIDIA CUDA = -7 o Optimal work balance :: walkers & accumulators
o BLAS /| LAPACK o More than 1 queue for accumulator workers threads

4. SUMMIT AND BEYOND 5. SCALABILITY ON SUMMIT 6. CHALLENGES AND IDEAS

e World’s fastest supercomputer

700 — —6— DCA++ CPU/GPU

e Low temperature = fden e Improve data movement between host/device:

e No of nodes: ~4600 m m simulation of a single-band - B a Unified memory using NVLINK2 (Challenge: prefetching)
Hubbard model

m Coulomb Repulsion U/t =4
m DCA Cluster Size (N.) = 4
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e All computation on GPUs; CPUs only for communication & I/O
(Programming model to reverse offload -- device to host)

e Per node:
m 21IBM Power 9 CPUs
m 6 NVIDIA Tesla V100s

. : w : Representative of . .
e Memory: ® REP duct . e Reductions on the GPUs / across nodes (using hardware /
= 800 GB DDR4 [Power 9’s] proguction runs. , — non-blocking collectives)
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e Ways to exploit multiple GPUs (3 per MPI rank on Summit)

VM 12 2 GB/s Write # of nodes

: : .
Memory (HBMs) [GPUs] R e A measurements of Green’s function e Exploit NVRAM -- maximize use of on-node memory

96 GB (6x16 GB) <—» NVLINK

- ox > Xom(ewe m Full 4-point vertex function : :
= 1.6 TB Non-volatile Memory YLl e ey P e Need for hybrid asynchronous programming models:

i %Nn\ilf\szl [ﬁ%ﬁtoiﬁ;gﬁmna R b e e 1 MPIrank/GPU ; 12 hardware threads running on 6 CPU = HPX [tasking modules reduce load imbalances]

o : m Kokkos [performance portable / hardware agnostic]
need for explicit data transfer] Cores (hyperthreading; sharing GPU on separate streams)

12.5 GB/
NIC
12.5 GB/,
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