FASTMath: Eigensolver Activities

FASTMath Team Members: Chao Yang, Roel Van Beeumen, Osni Marques (LBNL)
The FASTMath eigensolver team develops efficient algorithms for solving large-scale eigenvalue problems arising from a number of SciDAC applications. These algorithms exploit special structures of the application problems and use compact representations of operators and eigenfunctions. A variety of techniques are used in the implementation of these algorithms to ensure eigensolvers are scalable on DOE leadership class high performance computers.

Spectrum slicing
Motivation: Reduce Rayleigh-Ritz calculation cost for the projected problem
Strategy: Divide the spectrum into subintervals and compute eigenvalues within each interval
simultaneovsly simultaneously

How to split the spectrum
Estimate distribution of eigenvalues (spectral density, DOS) (L. Li
2016.)
Depends on architecture, sparse solver efficiency
Interior eigenvalue solver
Bandpass polynomial filter (Saad et al 2017)
Post-processing to eliminate duplicates and catch missing eigenvalue

FAST Eigensolver for Hybrid Functional DFT Construct low rank approximation to V_{x} throuyh

Use adaptive exchange compressing (ACE) to further reduce the cost of applying V_{X} to occupied orbitals in an iterative diagonalization procedure
Robust and efficient DIIS for SCF without constructing full Hamiltonian or density matrices

Tensor Eigenvalue Problem

$$
H=\sum_{i=1}^{L} \vec{S}_{i} \cdot \vec{S}_{i+1}-h_{i} S_{i}^{Z}
$$

- Hamiltonian with tensor product structure

$$
H=\left[\sum_{i=1}^{L} I \otimes \cdots \otimes A_{i, i+1} \otimes I \cdots\right]+D
$$

- Matrix-free solvers
> LOBPCG
> Polynomial filtering
- DMRG

> Compact tensor train representation of the eigenvector
> Alternating Energy minimization

||||
> Variational Monte Carlo (stochastic gradient descent)

Nuclear Configuration Interaction

- Eigenfunction approximation: $\Psi \approx \sum_{a} \Phi_{a}\left(r_{1}, r_{2}, \ldots, r_{A}\right)$, where Φ_{a} is a Slater determinant defined by a quantum number a that satisfy certain constraints
- $\widehat{H}_{a, b}=\left\langle\Phi_{a}\right| H\left|\Phi_{b}\right\rangle$ is the sparse representation of Hamiltonian in the Φ_{a} basis
- Use iterative solver (Lanczos, LOBPCG) to compute a few lowest eigenstates of \widehat{H}
> Develop appropriate data distribution (\widehat{H} and vectors)
> Reduce communication cost
> Use block algorithms (e.g. locally optimal block preconditioned conjugate gradient)
> Optimized local sparse matrix (block) vector multiplication
> Good preconditioner

> Hierarchical eigensolver with good starting guesses

Nonlinear Eigenvalue Problem

Application List

- Electronic structure of catalytic materials (BES)
- Quantum materials (BES)
- NUCLEI (NP)
- C2SEPEM (CSM center)
- SPEC (CCS center)
- EFRC

C2SEPEM.

- NWChemEX (ECP)

Future Plans

- Load balance in spectrum slicing
- Integration of spectrum slicing with application software (NWChemEX, PARSEC, DGDFT etc.)
- Hybrid OpenMP-MPI parallel implementation tensor eigenvalue solver
- A greedy hierarchical eigensolver for nuclear configuration interaction
- Port and optimize on KNL

Lawrence Livermore National Laboratory

NOAK

