FASTMath Team Members: Chao Yang, Roel Van Beeumen, Osni Marques (LBNL)

HASTIN

The FASTMath eigensolver team develops efficient algorithms for solving large-scale eigenvalue problems arising from a number of SciDAC applications. These algorithms exploit special structures of the application problems and use compact representations of operators and eigenfunctions. A variety of techniques are used in the implementation of these algorithms to ensure eigensolvers are scalable on DOE leadership class high performance computers.

Polynomial Filtering	g for D	FT Eig	jenva	lue Pro	ble
 Chebyshev polynomial 		ſ			
Amplify low end of the spectrum		1200 1000		_	
Only requires sparse MATVEC		800 × 600		-	
 Subspace iteration 		400 -		-	
$\succ Y = p_k(H)X$		200		-	
$\succ X \leftarrow \operatorname{orth}(Y)$		-2	-1.5 -1	-0.5 0 0.5 1 X	
Repeat until "convergence"		# of	Matrix	# of cores	Che
 Use complementary subspace technique to reduce the Rayleigh- 	system	(electron s)	size	(used in sub)	(sub e
 Ritz calculation cost Implemented in DGDET 	Electrolyte3 D	8,586 (28,808)	343,440	34,560 (3,456)	3 (1
	SiDiamond3 D	8,000 (32,000)	320,000	34,560 (3,456)	4 (2
$E_1 E_5 E_g E_{13}$	Graphene2 D	11,520 (23,040)	230,400	27,648 (4,608)	3 (2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CuFCC3D	4,000 (44,000)	140,000	30,000 (3,000)	7 (4
	LiBCC3D	27,648 (82,944)	1,382,40 0	38,880 (12,960)	18 (16
Spectrum slicing					
Motivation: Reduce Rayleigh-Ritz calculation cost for the projected problem					
Strategy: Divide the spectrum into subintervals and compute eigenvalues within each intervalues simultaneously					
(· · · · · · · · · · · · · · · · · · ·	
sub-interval 1	sub-interval 2		sub-interval k	E	
How to split the spectrum					

Estimate distribution of eigenvalues (spectral density, DOS) (L. Li 2016.)

Depends on architecture, sparse solver efficiency

Interior eigenvalue solver

Bandpass polynomial filter (Saad et al 2017)

Post-processing to eliminate duplicates and catch missing eigenvalue

FAST Eigensolver for Hybrid Functional DFT

1.324902

1.289128

K-TK- BEERS MIN

1000 atoms 2000 bands

74³ grid points

2000 processors

Hybrid ACE

Hybrid ACE-ISDF

20

- Construct low rank approximation to V_X through interpolative separable density fitting (ISDF)
- Use adaptive exchange compressing (ACE) to further 🦻 reduce the cost of applying V_X to occupied orbitals in Si₈ (1×1×1) Si₆₄ (2×2×2) Si₁₀₀₀ (5×5×5) Si₄₀₉₆ (8×8×8) an iterative diagonalization procedure
- Robust and efficient DIIS for SCF without constructing full Hamiltonian or density matrices

FASTMath: Eigensolver Activities

